• 제목/요약/키워드: MyD88

검색결과 69건 처리시간 0.025초

Dietary glucosinolates inhibit splenic inflammation in high fat/cholesterol diet-fed C57BL/6 mice

  • Gu, HyunJi;Gwon, Min-Hee;Kim, Sang-Min;Yun, Jung-Mi
    • Nutrition Research and Practice
    • /
    • 제15권6호
    • /
    • pp.798-806
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Obesity is associated with chronic inflammation. The spleen is the largest organ of the lymphatic system and has an important role in immunity. Obesity-induced inflammatory responses are triggered by Toll-like receptor (TLR)-myeloid differentiation primary response 88 (MyD88) pathway signaling. Phenethyl isothiocyanate (PEITC) and 3,3'-diindolylmethane (DIM), major dietary glucosinolates present in cruciferous vegetables, have been reported to produce anti-inflammatory effects on various diseases. However, the effects of PEITC and DIM on the obesity-induced inflammatory response in the spleen are unclear. The purpose of this study was to examine the anti-inflammatory effects of PEITC and DIM on the spleen and their mechanism in high fat/cholesterol diet (HFCD)-fed C57BL/6 mice. MATERIALS/METHODS: We established an animal model of HFCD-induced obesity using C57BL/6 mice. The mice were divided into six groups: normal diet with AIN-93G diet (CON), high fat diet (60% calories from fat) with 1% cholesterol (HFCD), HFCD with PEITC 30 mg/kg/day or 75 mg/kg/day (HFCD+P30, HFCD+P75), and HFCD with DIM 1.5 mg/kg/day or 7.5 mg/kg/day (HFCD+D1.5, HFCD+D7.5). Enzyme-linked immunosorbent assay was used to evaluate pro-inflammatory cytokine secretion. Western blot and quantitative polymerase chain reaction were used to analyze protein and mRNA levels of nuclear factor kappa B (NF-κB) p65, interleukin 6 (IL-6), cyclooxygenase 2 (COX-2), TLR2, TLR4, and MyD88 in spleen tissue. RESULTS: Serum IL-6 levels were significantly higher in the HFCD group than in groups fed a HFCD with PEITC or DIM. Levels of NF-κB p65 protein and TLR2/4, MyD88, NF-κB p65, IL-6, and COX-2 mRNA were significantly higher in the HFCD group than in the CON group and were reduced by the PEITC and DIM supplements. CONCLUSIONS: PEITC- and DIM-supplemented diets improved splenic inflammation by modulating the TLR2/4-MyD88 pathway in HFCD-fed mice. We suggest that dietary glucosinolates may at least partially improve obesity-induced inflammation of the spleen.

Suppression of the TRIF-dependent Signaling Pathway of Toll-like Receptor by Cadmium in RAW264.7 Macrophages

  • Park, Se-Jeong;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • 제5권3호
    • /
    • pp.187-192
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens. The stimulation of TLRs by microbial components triggers the activation of the myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-$\beta$ (TRIF)-dependent downstream signaling pathways. TLR/MyD88 signaling pathway induces the activation of nuclear factor-kappa B (NF-${\kappa}B$) and the expression of inflammatory cytokine genes, including tumor necrosis factor-alpha, interleukin (IL)-6, IL-12, and IL-$1{\beta}$. On the other hand, TLR/TRIF signaling pathway induces the delayed-activation of NF-${\kappa}B$ and interferon regulatory factor 3 (IRF3), and the expression of type I interferons (IFNs) and IFN-inducible genes. The divalent heavy metal cadmium (Cd) is clearly toxic to most mammalian organ systems, especially the immune system. Yet, the underlying toxic mechanism(s) remain unclear. Cd inhibits the MyD88-dependent pathway by ceasing the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether Cd inhibits the TRIF-dependent pathway. Presently, Cd inhibited NF-${\kappa}B$ and IRF3 activation induced by lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid. Cd inhibited LPS-induced IRF3 phosphorylation and IFN-inducible genes such as interferon inducible protein-10 and regulated on activation normal T-cell expressed and secreted (RANTES). These results suggest that Cd can modulate TRIF-dependent signaling pathways of TLRs.

Toll-Like Receptor Gene Expression during Trichinella spiralis Infection

  • Kim, Sin;Park, Mi Kyung;Yu, Hak Sun
    • Parasites, Hosts and Diseases
    • /
    • 제53권4호
    • /
    • pp.431-438
    • /
    • 2015
  • In Trichinella spiralis infection, type 2 helper T (Th2) cell-related and regulatory T ($T_{reg}$) cell-related immune responses are the most important immune events. In order to clarify which Toll-like receptors (TLRs) are closely associated with these responses, we analyzed the expression of mouse TLR genes in the small intestine and muscle tissue during T. spiralis infection. In addition, the expression of several chemokine- and cytokine-encoding genes, which are related to Th2 and $T_{reg}$ cell mediated immune responses, were analyzed in mouse embryonic fibroblasts (MEFs) isolated from myeloid differentiation factor 88 (MyD88)/TIR-associated proteins (TIRAP) and Toll receptor-associated activator of interferons (TRIF) adapter protein deficient and wild type (WT) mice. The results showed significantly increased TLR4 and TLR9 gene expression in the small intestine after 2 weeks of T. spiralis infection. In the muscle, TLR1, TLR2, TLR5, and TLR9 gene expression significantly increased after 4 weeks of infection. Only the expression of the TLR4 and TLR9 genes was significantly elevated in WT MEF cells after treatment with excretory-secretory (ES) proteins. Gene expression for Th2 chemokine genes were highly enhanced by ES proteins in WT MEF cells, while this elevation was slightly reduced in MyD88/$TIRAP^{-/-}$ MEF cells, and quite substantially decreased in $TRIF^{-/-}$ MEF cells. In contrast, IL-10 and $TGF-{\beta}$ expression levels were not elevated in MyD88/$TIRAP^{-/-}$ MEF cells. In conclusion, we suggest that TLR4 and TLR9 might be closely linked to Th2 cell and $T_{reg}$ cell mediated immune responses, although additional data are needed to convincingly prove this observation.

Hovenia Monofloral Honey can Attenuate Enterococcus faecalis Mediated Biofilm Formation and Inflammation

  • You, Ri;Kwon, Oh Yun;Woo, Hyun Joo;Lee, Seung Ho
    • 한국축산식품학회지
    • /
    • 제42권1호
    • /
    • pp.84-97
    • /
    • 2022
  • We evaluated the anti-biofilm formation and anti-inflammatory activity of Hovenia monofloral honey (HMH) against Enterococcus faecalis. Co-culture of HMH with E. faecalis attenuated the biofilm formation of E. faecalis on a polystyrene surface. In addition, HMH effectively eradicated the established E. faecalis biofilm. HMH significantly attenuated E. faecalis growth but did not affect the production of extracellular polymeric substances on E. faecalis, indicating that reduction of E. faecalis biofilm is a result of HMH-mediated killing of E. faecalis. Furthermore, we found that HMH can effectively attenuate E. faecalis-induced expression of a proinflammatory interleukin-8 (IL- 8) in HT-29 cells. Interestingly, treatment of HMH significantly attenuated the E. faecalis-mediated expression of Toll-like receptor-2 (TLR-2) and its adaptor molecules, myeloid differentiation primary response 88 (MyD88), in HT-29 cells. In addition, E. faecalis-induced mitogen-activated protein kinases (MAPKs) phosphorylation was significantly attenuated by HMH administration. Furthermore, HMH-mediated antiinflammatory efficacy (0.2 mg/mL of HMHs) had an equal extent of inhibitory efficacy as 5 μM of MyD88 inhibitor to attenuate E. faecalis-mediated IL-8 expression in HT-29 cells. These results suggest that HMH could effectively inhibit E. faecalis-mediated gastrointestinal inflammation through regulating the TLR-2/MyD88/MAPKs signaling pathways. Collectively, our data suggest that HMH could be developed as a potential natural agent to control E. faecalis-mediated biofilm formation and inflammation.

Hesperetin suppresses LPS/high glucose-induced inflammatory responses via TLR/MyD88/NF-κB signaling pathways in THP-1 cells

  • Lee, Aeri;Gu, HyunJi;Gwon, Min-Hee;Yun, Jung-Mi
    • Nutrition Research and Practice
    • /
    • 제15권5호
    • /
    • pp.591-603
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Unregulated inflammatory responses caused by hyperglycemia may induce diabetes complications. Hesperetin, a bioflavonoid, is a glycoside in citrus fruits and is known to have antioxidant and anticarcinogenic properties. However, the effect of inflammation on the diabetic environment has not been reported to date. In this study, we investigated the effect of hesperetin on proinflammatory cytokine secretion and its underlying mechanistic regulation in THP-1 macrophages with co-treatment LPS and hyperglycemic conditions. MATERIALS/METHODS: THP-1 cells differentiated by PMA (1 µM) were cultured for 48 h in the presence or absence of hesperetin under normoglycemic (5.5 mM/L glucose) or hyperglycemic (25 mM/L glucose) conditions and then treated with LPS (100 ng/mL) for 6 h before harvesting. Inflammation-related proteins and mRNA levels were evaluated by enzyme-linked immunosorbent assay, western blot, and quantitative polymerase chain reaction analyses. RESULTS: Hesperetin (0-100 µM, 48 h) treatment did not affect cell viability. The tumor necrosis factor-α and interleukin-6 levels increased in cells co-treated with LPS under hyperglycemic conditions compared to normoglycemic conditions, and these increases were decreased by hesperetin treatment. The TLR2/4 and MyD88 activity levels increased in cells co-treated with LPS under hyperglycemic conditions compared to normoglycemic conditions; however, hesperetin treatment inhibited the TLR2/4 and MyD88 activity increases. In addition, nuclear factor-κB (NF-κB) and Acetyl-NF-κB levels increased in response to treatment with LPS under hyperglycemic conditions compared to normoglycemic conditions, but those levels were decreased when treated with hesperetin. SIRT3 and SIRT6 expressions were increased by hesperetin treatment. CONCLUSIONS: Our results suggest that hesperetin may be a potential agent for suppressing inflammation in diabetes.

Carnosic acid inhibits TLR4-MyD88 signaling pathway in LPS-stimulated 3T3-L1 adipocytes

  • Park, Mi-Young;Mun, Seong Taek
    • Nutrition Research and Practice
    • /
    • 제8권5호
    • /
    • pp.516-520
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Carnosic acid (CA), found in rosemary (Rosemarinus officinalis) leaves, is known to exhibit anti-obesity and anti-inflammatory activities. However, whether its anti-inflammatory potency can contribute to the amelioration of obesity has not been elucidated. The aim of the current study was to investigate the effect of CA on Toll-like receptor 4 (TLR4) pathways in the presence of lipopolysaccharide (LPS) in 3T3-L1 adipocytes. MATERIALS/METHODS: 3T3-L1 adipocytes were treated with CA ($0-20{\mu}M$) for 1 h, followed by treatment with LPS for 30 min; mRNA expression of adipokines and protein expression of TLR4-related molecules were then measured. RESULTS: LPS-stimulated 3T3-L1 adipocytes showed elevated mRNA expression of tumor necrosis factor (TNF)-${\alpha}$, interleukin-6, and monocyte chemoattractant protein-1, and CA significantly inhibited the expression of these adipokine genes. LPS-induced up regulation of TLR4, myeloid differentiation factor 88, TNF receptor-associated factor 6, and nuclear factor-${\kappa}B$, as well as phosphorylated extracellular receptor-activated kinase were also suppressed by pre-treatment of 3T3-L1 adipocytes with CA. CONCLUSIONS: Results of this study suggest that CA directly inhibits TLR4-MyD88-dependent signaling pathways and decreases the inflammatory response in adipocytes.

Suppression of the TRIF-Dependent Signaling Pathway of Toll-Like Receptors by Isoliquiritigenin in RAW264.7 Macrophages

  • Park, Se-Jeong;Song, Ho-Yeon;Youn, Hyung-Sun
    • Molecules and Cells
    • /
    • 제28권4호
    • /
    • pp.365-368
    • /
    • 2009
  • Toll-like receptors (TLRs) play an important role in host defense by sensing invading microbial pathogens and initiating innate immune responses. The stimulation of TLRs by microbial components triggers the activation of myeloid differential factor 88 (MyD88)- and toll-interleukin-1 receptor domain-containing adapter inducing interferon-${\beta}$ (TRIF)-dependent downstream signaling pathways. Isoliquiritigenin (ILG), an active ingredient of Licorice, has been used for centuries to treat many chronic diseases. ILG inhibits the MyD88-dependent pathway by inhibiting the activity of inhibitor-${\kappa}B$ kinase. However, it is not known whether ILG inhibits the TRIF-dependent pathway. To evaluate the therapeutic potential of ILG, we examined its effect on signal transduction via the TRIF-dependent pathway of TLRs induced by several agonists. ILG inhibited nuclear factor-${\kappa}B$ and interferon regulatory factor 3 activation induced by lipopolysaccharide or polyinosinic-polycytidylic acid. ILG inhibited the lipopolysaccharide-induced phosphorylation of interferon regulatory factor 3 as well as interferon-inducible genes such as interferon inducible protein-10, and regulated activation of normal T-cell expressed and secreted (RANTES). These results suggest that ILG can modulate TRIF-dependent signaling pathways of TLRs, leading to decreased inflammatory gene expression.

이삭물수세미(Myriophyllum spicatum L.) 에탄올 추출물의 항산화와 항염증 효과 (Evaluation Antioxidant and Anti-inflammatory Activity of Ethanolic Extracts of Myriophyllum spicatum L. in Lipopolysaccharide-stimulated RAW 264.7 Cells )

  • 김철환;이영경;김민진;최지수;황병수;조표연;김영준;정용태
    • 한국자원식물학회지
    • /
    • 제36권1호
    • /
    • pp.15-25
    • /
    • 2023
  • 이삭물수세미는 민간에서는 전초를 고름, 염증 등에 약용으로 사용하였으나, 염증에 대한 연구가 미비한 상황이다. 이에 본 연구에서는 이삭물수세미 추출물(EMS)의 항산화 효능과 항염증 효능을 분석하였다. 항산화 효능은 DPPH 라디칼 소거능과 환원력을 통해 산화적 스트레스를 통해 염증을 유발시킬 수 있는 ROS (Hong et al., 2020; Snezhkina et al., 2019)를 억제하는지 확인하였고, 항염증 효능은 염증 발현 인자인 LPS를 이용하여 RAW 264.7 대식세포에 염증을 유도한 뒤 pro-inflammatory cytokine (TNF-α, IL-1β)과 염증 매개체(NO, PGE2)의 억제 및 TLR4/Myd88/NF-κB signaling pathway 발현 억제를 통해 확인하였다. 연구 결과, 항산화 효능에 있어서는 DPPH 라디칼 소거능과 Fe3+를 Fe2+로 환원시키는 환원력이 농도 의존적으로 증가함을 확인하였다. 무독성 상태에서 실험하기 위해 LPS와 EMS를 처리한 RAW 264.7 대식세포에서 90% 이상의 생존율을 나타내는 조건에서 실험을 진행하였다. LPS로 염증이 유도된 RAW 264.7 세포에서 EMS는 염증 매개 인자의 발현 및 생성 억제(iNOS에 의한 NO 생성 및 COX-2에 의한 PGE2 생성억제)와 pro-inflammatory cytokine (TNF-α 및 IL-1β)의 생성 또한 억제하였다. 특이적으로 COX-2에 의한 PGE2 생성 억제에서는 고농도에서 작용함을 확인하였고, IL-1β에서는 약한 억제력을 보였다. 이후 signaling pathway에서 염증 전사인자 경로를 확인하기 위하여 TLR4/MyD88의 활성을 확인하였고, EMS 처리에 따라 농도 의존적으로 억제되는 것을 확인하였다. 이에 따라 염증 초기 단계에서 NF-κB p65가 nuclear로 들어가는 것을 억제하는지 확인하기 위해 early time (LPS 처리 후 30, 60 min) 조건으로 nuclear에서 p65 인산화를 확인하였다. 그 결과, LPS 자극으로 인해 증가된 p65 인산화가 EMS에 의해 부분적으로 억제됨을 확인하였다. 이상의 결과를 통해 LPS로 염증이 유도된 RAW 264.7 대식세포에서 EMS가 COX-2에 의한 PGE2 생성 억제와 IL-1β의 생성에 있어 낮은 억제력을 가진 반면, iNOS에 의한 NO과 TNF-α 생성 및 TLR4/MyD88 singnaling pathway에 있어 강한 억제력을 가짐을 확인하였다. 결론적으로 EMS가 ROS를 제거하고 TLR4/MyD88/NF-κB signaling pathway를 억제함으로써 염증 인자들의 전사를 억제하고, 염증 인자 부분에서는 iNOS에 의한 NO 생성과 TNF-α 생성을 강하게 억제하여 RAW 264.7 대식세포에서 LPS로 자극된 염증을 억제하는 것으로 판단된다. 또한 TLR4/Myd88/NF-κB signaling pathway를 통한 pro-inflammatory cytokine과 염증 매개체와의 연관성에 대한 기초자료로 활용할 수 있는 근거 자료가 될 수 있을 것으로 생각된다.

Glycogen synthase kinase 3β in Toll-like receptor signaling

  • Ko, Ryeojin;Lee, Soo Young
    • BMB Reports
    • /
    • 제49권6호
    • /
    • pp.305-310
    • /
    • 2016
  • Toll-like receptors (TLRs) play a critical role in the innate immune response against pathogens. Each TLR recognizes specific pathogen-associated molecular patterns, after which they activate the adaptor protein MyD88 or TRIF-assembled signaling complex to produce immune mediators, including inflammatory cytokines and type I IFNs. Although the activation of TLR is important for host defense, its uncontrolled activation can damage the host. During the past decade, numerous studies have demonstrated that GSK3β is a key regulator of inflammatory cytokine production in MyD88-mediated TLR signaling via TLR2 and TLR4. Recently, GSK3β has also been implicated in the TRIF-dependent signaling pathway via TLR3. In this review, we describe current advances on the regulatory role of GSK3β in immune responses associated with various TLRs. A better understanding of the role of GSK3β in TLR signaling might lead to more effective anti-inflammatory interventions.

Cadmium but not Mercury Suppresses NF-$\kappa$B Activation and COX-2 Expression Induced by Toll-like Receptor 2 and 4 Agonists

  • Ahn, Sang-Il;Park, Seul-Ki;Lee, Mi-Young;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • 제5권2호
    • /
    • pp.141-146
    • /
    • 2009
  • Toll-like receptors (TLRs) induce innate immune responses by recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor kappa-B (NF-$\kappa$B) leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Deregulated activation of TLRs can lead to the development of severe systemic inflammation. Divalent heavy metals, cadmium and mercury, have been used for thousands of years. While cadmium and mercury are clearly toxic to most mammalian organ systems, especially the immune system, their underlying toxic mechanism(s) remain unclear. Here, we report biochemical evidence that cadmium, but not mercury, inhibits NF-$\kappa$B activation and COX-2 expression induced by TLR2 or TLR4 agonists, while cadmium does not inhibit NF-$\kappa$B activation induced by the downstream signaling component of TLRs, MyD88. Thus, the target of cadmium to inhibit NF-$\kappa$B activation may be upstream of MyD88 including TLRs themselves, or events leading to TLR activation by agonists.