• Title/Summary/Keyword: Mutation Operator

Search Result 67, Processing Time 0.028 seconds

Incorporating Genetic Algorithms into the Generation of Artificial Accelerations (인공 지진파 작성을 위한 유전자 알고리즘의 적용)

  • Park, Hyung-Ghee;Chung, Hyun-Kyo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.1-9
    • /
    • 2007
  • The method of generating the artificial acceleration time histories for seismic analysis based on genetic algorithms is presented. For applying to the genetic algorithms, the frequencies are selected as the decision variables eventually to be genes. An arithmetic average crossover operator and an arithmetic ratio mutation operator are suggested in this study. These operators as well as the typical simple crossover operator are utilized in generating the artificial acceleration time histories corresponding to the specified design response spectrum. Also these generated artificial time histories are checked whether their outward features are to be coincident with the recorded earthquake motion or not. The features include envelope shape, correlation condition between 2 horizontal components of motion, and the relationship of max. acceleration, max. velocity and max. displacement of ground.

Fuzzy Controller Design of 2 D.O.F of Wheeled Mobile Robot using Niche Meta Genetic Algorithm (Niche Meta 유전 알고리즘을 이용한 2자유도 이동 로봇의 퍼지 제어기 설계)

  • Kim Sung-Hoe;Kim Ki-Yeoul
    • The Journal of Information Technology
    • /
    • v.5 no.4
    • /
    • pp.73-79
    • /
    • 2002
  • In this paper, I will propose the Niche-Meta Genetic Algorithm that has a multi-mutation operator for design of fuzzy controller. The gene in the proposed algorithm is formed by several parameters that represent the crossover rate, mutation rate and input-output membership functions. The optimization of fuzzy membership function is performed with local search on sub-population and the optimal structure is constructed with global search on total-population. The multi-mutation is selected under basis of the result of local evolution. A simulation for 2 D.O.F wheeled-mobile robot is showed to prove the efficiency of the proposed algorithm

  • PDF

Test Set Generation for Pairwise Testing Using Genetic Algorithms

  • Sabharwal, Sangeeta;Aggarwal, Manuj
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1089-1102
    • /
    • 2017
  • In software systems, it has been observed that a fault is often caused by an interaction between a small number of input parameters. Even for moderately sized software systems, exhaustive testing is practically impossible to achieve. This is either due to time or cost constraints. Combinatorial (t-way) testing provides a technique to select a subset of exhaustive test cases covering all of the t-way interactions, without much of a loss to the fault detection capability. In this paper, an approach is proposed to generate 2-way (pairwise) test sets using genetic algorithms. The performance of the algorithm is improved by creating an initial solution using the overlap coefficient (a similarity matrix). Two mutation strategies have also been modified to improve their efficiency. Furthermore, the mutation operator is improved by using a combination of three mutation strategies. A comparative survey of the techniques to generate t-way test sets using genetic algorithms was also conducted. It has been shown experimentally that the proposed approach generates faster results by achieving higher percentage coverage in a fewer number of generations. Additionally, the size of the mixed covering arrays was reduced in one of the six benchmark problems examined.

Discrete optimal sizing of truss using adaptive directional differential evolution

  • Pham, Anh H.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.275-296
    • /
    • 2016
  • This article presents an adaptive directional differential evolution (ADDE) algorithm and its application in solving discrete sizing truss optimization problems. The algorithm is featured by a new self-adaptation approach and a simple directional strategy. In the adaptation approach, the mutation operator is adjusted in accordance with the change of population diversity, which can well balance between global exploration and local exploitation as well as locate the promising solutions. The directional strategy is based on the order relation between two difference solutions chosen for mutation and can bias the search direction for increasing the possibility of finding improved solutions. In addition, a new scaling factor is introduced as a vector of uniform random variables to maintain the diversity without crossover operation. Numerical results show that the optimal solutions of ADDE are as good as or better than those from some modern metaheuristics in the literature, while ADDE often uses fewer structural analyses.

FUZZY RULE MODIFICATION BY GENETIC ALGORITHMS

  • Park, Seihwan;Lee, Hyung-Kwang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.646-651
    • /
    • 1998
  • Fuzzy control has been used successfully in many practical applications. In traditional methods, experience and control knowledge of human experts are needed to design fuzzy controllers. However, it takes much time and cost. In this paper, an automatic design method for fuzzy controllers using genetic algorithms is proposed. In the method, we proposed an effective encoding scheme and new genetic operators. The maximum number of linguistic terms is restricted to reduce the number of combinatorial fuzzy rules in the research space. The proposed genetic operators maintain the correspondency between membership functions and control rules. The proposed method is applied to a cart centering problem. The result of the experiment has been satisfactory compared with other design methods using genetic algorithms.

  • PDF

A Hybrid Genetic Algorithm for the Multiobjective Vehicle Scheduling Problems with Service Due Times (서비스 납기가 주어진 다목적차량일정문제를 위한 혼성유전알고리듬의 개발)

    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.24 no.2
    • /
    • pp.121-134
    • /
    • 1999
  • In this paper, I propose a hybrid genetic algorithm(HGAM) incorporating a greedy interchange local optimization procedure for the multiobjective vehicle scheduling problems with service due times where three conflicting objectives of the minimization of total vehicle travel time, total weighted tardiness, and fleet size are explicitly treated. The vehicle is allowed to visit a node exceeding its due time with a penalty, but within the latest allowable time. The HGAM applies a mixed farming and migration strategy in the evolution process. The strategy splits the population into sub-populations, all of them evolving independently, and applys a local optimization procedure periodically to some best entities in sub-populations which are then substituted by the newly improved solutions. A solution of the HCAM is represented by a diploid structure. The HGAM uses a molified PMX operator for crossover and new types of mutation operator. The performance of the HGAM is extensively evaluated using the Solomons test problems. The results show that the HGAM attains better solutions than the BC-saving algorithm, but with a much longer computation time.

  • PDF

Optimal topology in Wibro MMR Network Using a Genetic Algorithm (유전 알고리즘을 이용한 Wibro MMR 네트워크의 최적 배치 탐색)

  • Oh, Dongik;Kim, Woo-Je
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.2
    • /
    • pp.235-245
    • /
    • 2008
  • The purpose of this paper is to develop a genetic algorithm to determine the optimal locations of base stations and relay stations in Wibro MMR Network. Various issues related to the genetic algorithm such as solution representation, selection method, crossover operator, mutation operator, and a heuristic method for improving the quality of solutions are presented. The computational results are presented for determining optimal parameters for the genetic algorithm, and show the convergence of the genetic algorithm.

Multi-objective optimal design of laminate composite shells and stiffened shells

  • Lakshmi, K.;Rama Mohan Rao, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.771-794
    • /
    • 2012
  • This paper presents a multi-objective evolutionary algorithm for combinatorial optimisation and applied for design optimisation of fiber reinforced composite structures. The proposed algorithm closely follows the implementation of Pareto Archive Evolutionary strategy (PAES) proposed in the literature. The modifications suggested include a customized neighbourhood search algorithm in place of mutation operator to improve intensification mechanism and a cross over operator to improve diversification mechanism. Further, an external archive is maintained to collect the historical Pareto optimal solutions. The design constraints are handled in this paper by treating them as additional objectives. Numerical studies have been carried out by solving a hybrid fiber reinforced laminate composite cylindrical shell, stiffened composite cylindrical shell and pressure vessel with varied number of design objectives. The studies presented in this paper clearly indicate that well spread Pareto optimal solutions can be obtained employing the proposed algorithm.

Particle Swarm Assisted Genetic Algorithm for the Optimal Design of Flexbeam Sections

  • Dhadwal, Manoj Kumar;Lim, Kyu Baek;Jung, Sung Nam;Kim, Tae Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.341-349
    • /
    • 2013
  • This paper considers the optimum design of flexbeam cross-sections for a full-scale bearingless helicopter rotor, using an efficient hybrid optimization algorithm based on particle swarm optimization, and an improved genetic algorithm, with an effective constraint handling scheme for constrained nonlinear optimization. The basic operators of the genetic algorithm, of crossover and mutation, are revisited, and a new rank-based multi-parent crossover operator is utilized. The rank-based crossover operator simultaneously enhances both the local, and the global exploration. The benchmark results demonstrate remarkable improvements, in terms of efficiency and robustness, as compared to other state-of-the-art algorithms. The developed algorithm is adopted for two baseline flexbeam section designs, and optimum cross-section configurations are obtained with less function evaluations, and less computation time.

Algorithms on layout design for overhead facility (천장형 설비의 배치 설계를 위한 해법의 개발)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.133-142
    • /
    • 2011
  • Overhead facility design problem(OFDP) is one of the shortest rectilinear flow network problem(SRFNP)[4]. Genetic algorithm(GA), artificial immune system(AIS), population management genetic algorithm (PM) and greedy randomized adaptive search procedures (GRASP) were introduced to solve OFDP. A path matrix formed individual was designed to represent rectilinear path between each facility. An exchange crossover operator and an exchange mutation operator were introduced for OFDP. Computer programs for each algorithm were constructed to evaluate the performance of algorithms. Computation experiments were performed on the quality of solution and calculations time by using randomly generated test problems. The average object value of PM was the best of among four algorithms. The quality of solutions of AIS for the big sized problem were better than those of GA and GRASP. The solution quality of GRASP was the worst among four algorithms. Experimental results showed that the calculations time of GRASP was faster than any other algorithm. GA and PM had shown similar performance on calculation time and the calculation time of AIS was the worst.