• Title/Summary/Keyword: Mutation

Search Result 2,945, Processing Time 0.037 seconds

High Feasibility of Liquid-Based Cytological Samples for Detection of EGFR Mutations in Chinese Patients with NSCLC

  • Wu, Chun-Yan;Hou, Li-Kun;Ren, Sheng-Xiang;Su, Bo;Chen, Gang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.18
    • /
    • pp.7885-7889
    • /
    • 2014
  • Background: Activating mutations of epidermal growth factor receptor (EGFR) could predict response to tyrosine kinase inhibitor (TKI) treatment in patients with non-small cell lung cancer (NSCLC). However, the detection of EGFR mutation is frequently challenging in clinical practice for the lack of tumor tissue. The aim of this study was to investigate the feasibility of performing EGFR mutation testing on various types of liquid-based cytology (LBC) samples. Materials and Methods: A total of 434 liquid-based cytology samples were collected from March 2010 and November 2013. Among them, 101 with diagnosis of lung adenocarcinoma had paired surgically resected specimens. The ADx Amplification Refractory Mutation System (ADx-ARMS) was used to determine EGFR mutation status both in LBC and resected samples. Results: All liquid-based cytology samples were adequate for EGFR mutation analysis. The mutation rate was 50.5% in the 434 NSCLC patients with LBC samples and the incidence rates of EGFR mutation were consistent among different specimens. We also detected EGFR positives in 52.5% (53/101) patients with paired histologic specimens. The concordance rate of EGFR mutation between LBC samples and paired histologic specimens was 92.1%. Conclusions: Our results suggest that liquid-based cytology samples are highly reliable for EGFR mutation testing in patients with NSCLC.

Mutagen4J: Effective Mutant Generation Tool for Java Programs (Mutagen4J: 효과적인 Java 프로그램 변이 생성 도구)

  • Jeon, Yiru;Kim, Yunho;Hong, Shin;Kim, Moonzoo
    • Journal of KIISE
    • /
    • v.43 no.9
    • /
    • pp.974-982
    • /
    • 2016
  • Mutation analysis (or software mutation analysis) generates variants of a target program by injecting systematic code changes to the target program, and utilizes the variants to analyze the target program behaviors. Effective mutation analyses require adequate mutation operators that generate diverse variants for use in the analysis. However, the current mutation analysis tools for Java programs have limitations, since they support only limited types of mutation operators and do not support recent language features such as Java8. In this study, we present Mutagen4J, a new mutant generation tool for Java programs. Mutagen4J additionally supports mutation operators recently shown to generate various mutants and fully supports recent Java language features. The experimental results show that Mutagen4J generates useful mutants for analyses 2.3 times more than the existing Java mutation tools used for the study.

VLSI Implementation of Adaptive mutation rate Genetic Algorithm Processor (자가적응 유전자 알고리즘 프로세서의 VLSI 구현)

  • 허인수;이주환;조민석;정덕진
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.157-160
    • /
    • 2001
  • This paper has been studied a Adaptive Mutation rate Genetic Algorithm Processor. Genetic Algorithm(GA) has some control parameters such as the probability of bit mutation or the probability of crossover. These value give a priori by the designer There exists a wide variety of values for for control parameters and it is difficult to find the best choice of these values in order to optimize the behavior of a particular GA. We proposed a Adaptive mutation rate GA within a steady-state genetic algorithm in order to provide a self-adapting mutation mechanism. In this paper, the proposed a adaptive mutation rate GAP is implemented on the FPGA board with a APEX EP20K600EBC652-3 devices. The proposed a adaptive mutation rate GAP increased the speed of finding optimal solution by about 10%, and increased probability of finding the optimal solution more than the conventional GAP

  • PDF

The Analysis of Methylenetetrahydrofolate Reductase Mutation in Recurrent Spontaneous Abortion Associated with Hyperhomocysteinemia (Homocysteine 과다증과 관련된 반복 자연유산에서 Methylenetetrahydrofolate Reductase돌연변이에 대한 분석)

  • Nam, Yoon-Sung;Choi, Jong-Soon;Ha, Kwon-Soo;Lee, Zee-Won;Oh, Do-Yeon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.3
    • /
    • pp.441-445
    • /
    • 1999
  • Objective: To analyze the methylenetetrahydrofolate reductase (MTHFR) mutation in recurrent spontaneous abortion associated with hyperhomocysteinemia. Material and Method: The blood sample of habitual aborter with high fasting homocysteine level was tested by PCR - RFLP method. Results: The patient was found to be a homozygosity for MTHFR gene mutation that was confirmed by the finding which is consistent with the mutation at the nucleotide 677 C to T, corresponding to Ala to Val. Conclusions: Hyperhomocysteinemia due to MTHFR mutation is a cause of recurrent spontaneous abortion. Therefore, the MTHFR mutation should be examined in the workup of recurrent spontaneous abortion showing hyperhomocysteinemia.

  • PDF

Mutation Breeding of Mushroom by Radiation

  • Sathesh-Prabu, Chandran;Lee, Young-Keun
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.285-295
    • /
    • 2011
  • Mushrooms belonging to macrofungi have been consumed by humans for their nutritional and medicinal values for centuries throughout the world. Mushroom farming is practiced in more than 100 countries of the world, with production increasing at a rate of 7% per annum. High yield and good quality are always the principal goals for agriculturally important crops, including mushrooms. Several breeding methods are employed for strain improvement such as mass selection based on the natural chance mutation and induced mutation (mutation breeding), protoplast fusion technology, cross breeding and transgenic breeding. However, mutation breeding has shown prominent success in crop plant improvement. Though several-hundred mutant crop varieties have been developed around the world, the mutation breeding of mushrooms is limited. This review paper explores the potential application of radiation on the development of mutant varieties of mushrooms for breeding with desired traits such as better quality and productivity.

An Equivalent Mutation Detection Method for Class-Level Mutation Analysis (클래스 수준 뮤테이션 분석을 위한 동등 뮤턴트 검출 기법)

  • Jang, Won-Ho;Ma, Yu-Seung;Kwon, Yong-Rae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.5
    • /
    • pp.571-575
    • /
    • 2010
  • Mutation testing is known as a very useful technique for measuring the effectiveness of a test data set and finding weak points of the test set. An equivalent mutant degrades the effectiveness of mutation testing. Elimination of equivalent mutants is a very important problem in mutation testing.In this paper, we proposed kinds of methods for detecting class-level equivalent mutants. These methods judge the equivalency of mutants through structural informations and behavioral information of the original program and mutants using static analysis. We found that our approach can detect not a few of equivalent mutants and expected that the cost of mutation testing can be saved considerably.

In vitro Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Forward Mutation Assay in Mammalian cells (포유동물세포의 Forward Mutation을 지표로 한 Mouse Lymphoma Thymidine Kinase (tk+/-) Gene Assay)

  • 류재천;김경란;최윤정
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.1
    • /
    • pp.7-13
    • /
    • 1999
  • The mouse lymphoma thymidine kinase (tk+/-) gene assay (MOLY) using L5178Y tk+/- mouse lymphoma cell line is one of the mammalian forward mutation assays. It is well known that MOLY has many advantages and more sensitive than the other mammalian forward mutation assays such as x-linked hyposanthine phosphoribosyltransferase (hprt) gene assay. The target gene of MOLY is a heterozygous tk+/- gene located in 11 chromosome of L5178Y tk+/- cell, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. MOLY has relatively short expression time (2-3 days) compared to 1 week of hprt gene assay. MOLY can also induce relatively high mutant frequency so a large number of events can be recorded. The bimodal distribution of colony size which may indicate gene mutation and chromosome breakage potential of chemicals according to mutation scale such as large normal-growing mutants and small slow-growing mutants can be observed in this assay. The statistical analysis of data can be performed using the MUTANT program developed by York Electronic Research in association with Hazelton as recommended by the UKEMS (United Kingdom Environmental Mutagen Society) guidelines. This report reviewed MOLY using the microtiter cloning technique (microwell assay).

Evaluation of Pyrosequencing Method for a BRAFV600E Mutation Test

  • Oh, Seo Young;Lee, Hoon Taek
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.47 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • A fine needle aspiration biopsy (FNAB) is the primary means of distinguishing benign from malignant in thyroid nodules. However, between 10 and 30% of the FNABs of thyroid nodules are diagnosed as 'indeterminate'. A molecular method is needed to reduce unnecessary surgery in this group. In Korea, most thyroid cancer is classic papillary type and BRAFV600E mutation is highly prevalent. Thus, this study compared the pyrosequencing method with the conventional direct DNA sequencing and PCR-RFLP analysis and investigated the evaluation of preoperative BRAFV600E mutation analysis as an adjunct diagnostic method with routine FNABs. Sixty-five (78.3%) of 83 histopathologically diagnosed malignant nodule revealed positive BRAFV600E mutation on pyrosequencing analysis. In detail, 65 (83.8%) of 78 papillary thyroid carcinomas sample showed positive BRAFV600E mutation. None of 29 benign nodules had in pyrodequencing, direct DNA sequencing and PCR-RFLP. Out of 31 thyroid nodules classified as 'indeterminate' on cytological examination preoperatively, 28 cases turned out to be malignant: 24 papillary thyroid carcinomas. Among that, 16 (66.7%) classic papillary thyroid carcinomas had BRAFV600E mutation. Among 65 papillary thyroid carcinomas with positive BRAFV600E mutation detected by pyrosequencing analysis, each 3 cases and 5 cases did not show BRAFV600E mutation by direct DNA sequencing and PCR-RFLP analysis. Therefore, pyrosequencing was superior to direct DNA sequencing and PCR-RFLP in detecting the BRAFV600E mutation of thyroid nodules (p =0.027). Detecting BRAFV600E mutation by pyrosequencing was more sensitivity, faster than direct DNA sequencing or PCR-RFLP.

Detection of Human Cytomegalovirus UL97 D605E Mutation in Korean Stem Cell Transplantation Recipients and Donors

  • Lee, Gyu-Cheol;Choi, Su-Mi;Lee, Chan Hee;Lee, Dong-Gun;Choi, Jung-Hyun;Yoo, Jin-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1154-1158
    • /
    • 2013
  • Ganciclovir resistance of human cytomegalovirus is associated with mutations in the viral UL97 gene and poses severe problems for immunocompromised patients. In this study, PCR-based restriction fragment length polymorphism and sequencing analyses detected the UL97 D605E mutation in all five clinical isolates from patients with ganciclovir-resistant human cytomegalovirus infection during prolonged ganciclovir therapy, whereas the M460V mutation was only present in 1 of 5 isolates. On the other hand, the detection rates of the D605E mutation in the stored available DNA samples from the donor and allogeneic stem cell transplantation recipients were 66.7% and 93.7%, respectively, suggesting that the presence of D605E mutation was not associated with the ganciclovir exposure. Although the D605E mutation may not be related to ganciclovir resistance, we suggest that this mutation could be an important molecular marker of human cytomegalovirus evolution in East Asian countries. Moreover, the restriction fragment length polymorphism method using the restriction enzyme HaeIII, which is generally used to detect the UL97 A591V mutation, could also detect the D605E mutation and may therefore be a useful tool for future research on the investigation of UL97 gene mutations.

Evolutionary Programming of Applying Estimated Scale Parameters of the Cauchy Distribution to the Mutation Operation (코시 분포의 축척 매개변수를 추정하여 돌연변이 연산에 적용한 진화 프로그래밍)

  • Lee, Chang-Yong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.9
    • /
    • pp.694-705
    • /
    • 2010
  • The mutation operation is the main operation in the evolutionary programming which has been widely used for the optimization of real valued function. In general, the mutation operation utilizes both a probability distribution and its parameter to change values of variables, and the parameter itself is subject to its own mutation operation which requires other parameters. However, since the optimal values of the parameters entirely depend on a given problem, it is rather hard to find an optimal combination of values of parameters when there are many parameters in a problem. To solve this shortcoming at least partly, if not entirely, in this paper, we propose a new mutation operation in which the parameter for the variable mutation is theoretically estimated from the self-adaptive perspective. Since the proposed algorithm estimates the scale parameter of the Cauchy probability distribution for the mutation operation, it has an advantage in that it does not require another mutation operation for the scale parameter. The proposed algorithm was tested against the benchmarking problems. It turned out that, although the relative superiority of the proposed algorithm from the optimal value perspective depended on benchmarking problems, the proposed algorithm outperformed for all benchmarking problems from the perspective of the computational time.