• Title/Summary/Keyword: MutS

Search Result 35, Processing Time 0.038 seconds

Crystal structure of mismatch repair protein MutS and its complex with a substrate DNA

  • Ban, Changill
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2003.05a
    • /
    • pp.16-16
    • /
    • 2003
  • Mismatches in a DNA duplex are mainly due to DNA duplication errors that are generated by improper function of DNA polymerase. MutS, MutL and MutH are crucial proteins for the initiation of the methyl-directed mismatch repairing in bacteria. MutS has an ATPase activity md recognize the mismatched or unpaired bases on DNA. After binding to a mismatch, MutS recruits MutL to mediate the activation of MutH an endonuclease, which cleaves the 5' site of d(GATC) on the un-methylated strand. Both MutL and MutS also have essential roles in the subsequent removal and re-synthesis of the daughter strand. We have determined the crystal structures of either intact or active fragments of each of these proteins, both alone and complexed with ligands (DNA, ADP and ATP). The biochemical and mutagenesis studies based on the detailed 3-D structures led to new insights into the role of the ATPase activity of MutS in the mismatch recognition and directions for future investigation of mismatch repair.

  • PDF

Functional properties of the thermostable mutL from Thermotoga maritima

  • Kim, Tae-Gyun;Heo, Seong-Dal;Ku, Ja-Kang;Ban, Chang-Ill
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.53-58
    • /
    • 2009
  • The methyl-directed mismatch repair (MMR) mechanism has been extensively studied in vitro and in vivo, but one of the difficulties in determining the biological relationships between the MMR-related proteins is the tendency of MutL to self-aggregate. The properties of a stable MutL homologue were investigated using a thermostable MutL (TmL) from Thermotoga maritima MSB8 and whose size exclusion chromatographic and crosslinking analyses were compatible with a dimeric form of TmL. TmL underwent conformational changes in the presence of nucleotides and single-stranded DNA (ssDNA) with ATP binding not requiring ssDNA binding activity of TmL, while ADPnP-stimulated TmL showed a high ssDNA binding affinity. Finally, TmL interacted with the T. maritima MutS (TmS), increasing the affinity of TmS to mismatched DNA base pairs and suggesting that the role of TmL in the formation of a mismatched DNA-TmS complex may be a pivotal observation for the study of the initial MMR system.

A Novel Mutation in the MUT Gene in an Asymptomatic Newborn with Isolated Methylmalonic Acidemia (메틸말론산혈증 신생아의 MUT 유전자에서 발견된 새로운 돌연변이)

  • Kwak, Min Jung;Kim, Yoo-Mi
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.14 no.2
    • /
    • pp.174-177
    • /
    • 2014
  • Isolated methylmalonic acidemia (MMA) is a group of autosomal recessive inborn errors of metabolism caused by impaired activity of methylmalonyl-coenzyme A mutase (MCM). Mutations in the gene encoding MCM (MUT ) is the most common cause of isolated MMA. In this report, we identify an asymptomatic 15 days old female who had elevated C3-acylcarnitine (C3) in the newborn screening. Her serum homocysteine was normal and urine methylmalonic acid was increased that suggested isolated MMA. She was maintained on a low-protein diet and carnitine supplementation. At 3 months of age, she was still asymptomatic and had normal growth. We analyzed MUT gene mutations. Two heterozygote mutations in the MUT gene were identified including c.323G>A and c.1672+2T>C (IVS8(+2)T>C. Among these, c.1672+2T>C (IVS8(+2)T>C) have not been described previously.

SIRT1 Inhibitor Enhances Hsp90 Inhibitor-mediated Abrogation of Hsp90 Chaperone Function and Potentiates the Cytotoxicity of Hsp90 Inhibitor in Chemo-resistant Human Cancer Cells (SIRT1 inhibitor에 의한 Hsp90 inhibitor의 Hsp90 샤페론 기능 억제 및 항암제 내성세포의 Hsp90 inhibitor에 대한 세포독성 증강)

  • Moon, Hyun-Jung;Lee, Su-Hoon;Kim, Hak-Bong;Lee, Kyoung-A;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.826-834
    • /
    • 2016
  • The present investigation was undertaken to examine the effectiveness of the combination treatment of an Hsp90 inhibitor and a SIRT1 inhibitor on suppressing the growth of chemo-resistant human cancer cells. We showed that inhibition of SIRT1 effectively potentiated the cytotoxicity of 17-allylamino-17-demethoxygeldanamycin (17-AAG) and reversed Hsp90 inhibitor resistance in multidrug-resistant (MDR) human ovarian HeyA8-MDR cells. Amurensin G, a potent natural SIRT1 inhibitor, enhanced Hsp90 inhibitor-mediated abrogation of the Hsp90 chaperone function and accelerated degradation of mutated p53 (mut p53), an Hsp90 client protein, by up-regulation of ubiquitin ligase CHIP. Knock-down of CHIP significantly attenuated amurensin G-induced mut p53 degradation. Down-regulation of mut p53 reduced the expression of heat shock factor1 (HSF1)/heat shock proteins (Hsps), a major cause of Hsp90 inhibitor resistance, which led to sensitization of the MDR cells to the Hsp90 inhibitor by the SIRT1 inhibitor. Amurensin G potentiated cytotoxicity of the Hsp90 inhibitor in HeyA8-MDR cells through suppression of 17-AAG-induced Hsp70 and Hsp27 induction via down-regulation of mut p53/HSF1, and it caused activation of PARP and inhibition of Bcl-2. Our data suggests that SIRT1 inhibitors could be used to sensitize MDR cells to Hsp90 inhibitors, possibly through suppression of the mut p53/HSF1-dependent pathway, and a novel mut p53-directed action of SIRT1 inhibition could effectively prevent mut p53 accumulation in MDR cells.

Surface Acoustic Wave Characteristics of Piezoelectric Materials and Protein Immobilization (압전 재료의 탄성표면파 특성과 단백질의 고정화)

  • Chong, Woo-Suk;Hong, Chul-Un;Kim, Gi-Beum
    • Korean Chemical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.166-171
    • /
    • 2006
  • In this study, in using a piezoelectric material of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ (PMN-PT), which has a high electromechanical coupling coefficient, we have tried to study about this material can be practically available as a new biosensor to detect protein by using surface acoustic wave (SAW). As the results, the filtering of the center frequency of the PMN-PT substrate is a superior result to that of the $LiTaO_3$ (LT) substrate, but the result was not completely satisfactory. Also this study attempts to develop a sensing method to detect mismatched DNA in order to diagnose cancer. We could directly immobilize the MutS to the NTA using the EDC solution. But, we immobilized MutS using nickel and it is judged that is more effective method to detect mismatched DNA.

Identification of a novel frameshift mutation (L345Sfs*15) in a Korean neonate with methylmalonic acidemia

  • Kim, Young A;Kim, Ji-Yong;Kim, Yoo-Mi;Cheon, Chong Kun
    • Journal of Genetic Medicine
    • /
    • v.14 no.2
    • /
    • pp.80-85
    • /
    • 2017
  • Methylmalonic acidemia (MMA) is an autosomal recessive metabolic disorder characterized by an abnormal accumulation of methylmalonyl-CoA and methylmalonate in body fluids without hyperhomocysteinemia. Cardiac disease is a rarely known lethal complication of MMA, herein, we report a Korean neonate diagnosed with MMA on the basis of biochemical and genetic findings, who developed cardiomyopathy, resulting in sudden death. The patient presented vomiting and lethargy at 3 days of age. Initially, the patient had an increased plasma propionylcarnitine/acetylcarnitine concentration ratio of 0.49 in a tandem mass spectrometry analysis and an elevated ammonia level of $537{\mu}mol/L$. Urine organic acid analysis showed increased excretion of methylmalonate. Subsequent sequence analysis of the methylmalonyl-CoA mutase (MUT) gene revealed compound heterozygous mutations c.323G>A (p.Arg108His) in exon 1 and c.1033_1034del (p. Leu345Serfs*15) in exon 4, the latter being a novel mutation. In summary, this is the first case of MMA and cardiomyopathy in Korea that was confirmed by genetic analysis to involve a novel MUT mutation.

Conditions for the Production of Amylase and Pretense in Marking Wheat Flour Nuluk by Aspergillus usamii mut. shirousamii S1 (Aspergillus usamii mut. shirousamii S1에 의한 밀가루누룩 제조시 Amylase와 Pretense의 생산조건)

  • 오명환;박서영
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.1
    • /
    • pp.51-57
    • /
    • 1994
  • A nuluk, a Korean traditional koji for brewing, was made with wheat flour and Aspergillus usamii mot. shirousamii S1 which had strong abilities in producing amylase and protease. The cultural conditions for the production of saccharogenic and proteolytic enzymes were tested. The productivities of saccharogenic and dextrogenic enzymes were improved when nuluk was made with unsteamed wheat flour as compared with steamed one, but those of proteolytic enzyme and organic acid were reduced. The addition of water containing 0.5% of hydrochloric acid was unfavorable for the production of saccharogenic, dextrogenic and proteolytic enzymes. The optimum ratios of water added to wheat flour for the production of saccharogenic enzyme and proteolytic enzyme were 32% and 28%, respectively on the basis of wheat flour. The optimum temperatures for the production of saccharogenic enzyme and proteolytic enzyme were 36$^{\circ}C$ and 28$^{\circ}C$, respectively. The activity of saccharogenic enzyme reached its maximum after 120 hours of cultivation at 36$^{\circ}C$, but that of proteolytic enzyme 96 hours. The productivity of saccharogenic enzyme was enhanced when the nuluk was molded after 24 hours of precultivation but that of proteolytic enzyme was reduced as compared with no molding.

  • PDF