Music summarization refers to a technique which automatically extracts the most important and representative segments in music content. In this paper, we propose and evaluate a technique which provides the repeated part in music content as music summary. For extracting a repeated segment in music content, the proposed algorithm uses the weighted sum of similarity measures based on multi-level vector quantization for fixed-length summary or optimal-length summary. For similarity measures, count-based similarity measure and distance-based similarity measure are proposed. The number of the same codeword and the Mahalanobis distance of features which have same codeword at the same position in segments are used for count-based and distance-based similarity measure, respectively. Fixed-length music summary is evaluated by measuring the overlapping ratio between hand-made repeated parts and automatically generated ones. Optimal-length music summary is evaluated by calculating how much automatically generated music summary includes repeated parts of the music content. From experiments we observed that optimal-length summary could capture the repeated parts in music content more effectively in terms of summary length than fixed-length summary.
The digitization of music has seen a considerable increase in audience size from a few localized listeners to a wider range of global listeners. At the same time, the digitization brings the challenge of smoothly retrieving music from large databases. To deal with this challenge, many systems which support the smooth retrieval of musical data have been developed. At the computational level, a query music piece is compared with the rest of the music pieces in the database. These systems, music information retrieval (MIR systems), work for various applications such as general music retrieval, plagiarism detection, music recommendation, and musicology. This paper mainly addresses two parts of the MIR research area. First, it presents a general overview of MIR, which will examine the history of MIR, the functionality of MIR, application areas of MIR, and the components of MIR. Second, we will investigate music similarity measurement methods, where we provide a comparative analysis of state of the art methods. The scope of this paper focuses on comparative analysis of the accuracy and efficiency of a few key MIR systems. These analyses help in understanding the current and future challenges associated with the field of MIR systems and music similarity measures.
음악 유사도 계산은 음악 검색 및 분류 등의 정보 처리 시스템 구현에 있어서 가장 중요한 부분이다. 본 논문은 최근 제안된 무게중심 모델을 이용한 음악 검색 방법에 대해서 살펴보고, 무게중심 모델의 확률 분포 유사도를 이용하여 음악 검색을 수행하고 성능을 평가하였다. 확률 분포간의 거리는 주어진 두 개의 확률 분포가 특정 기준에서 얼마나 가까운 지를 계산하는 것으로 다이버전스라고 불리기도 한다. 본 논문에서는 무게중심 모델에서 확률 분포 간의 거리 비교 시에 알파 다이버전스를 활용하였다. 알파 다이버전스는 알파 값에 따라 다양한 형태를 가지며, 널리 사용되고 있는 KLD(Kullback-Leibler)와 BD(Bhattacharyya Distance)를 포함한다. 음악 장르와 가수 데이터셋에서 검색 실험을 수행했고, 확률 분포 거리 기반 유사도와 벡터 거리 기반 유사도의 음악 검색 성능을 비교하였다. 알파 다이버전스를 통해서 무게중심 모델 기반 음악 검색 성능을 개선시킬 수 있음을 보였다.
This paper presents an algorithm for effective retrieval of score information to an input score image. The originality of the proposed algorithm is that it is designed to be robust to recognition errors by an OMR (Optical Music Recognition), while existing methods such as pitch histogram requires error induced OMR result be corrected before retrieval process. This approach helps people to retrieve score without training on music score for error correction. OMR takes a score image as input, recognizes musical symbols, and produces structural symbolic notation of the score as output, for example, in MusicXML format. Among the musical symbols on a score, it is observed that filled noteheads are rarely detected with errors with its simple black filled round shape for OMR processing. Barlines that separate measures also strong to OMR errors with its long uniform length vertical line characteristic. The proposed algorithm consists of a descriptor for a score and a similarity measure between a query score and a reference score. The descriptor is based on note-count, the number of filled noteheads in a measure. Each part of a score is represented by a sequence of note-count numbers. The descriptor is an n-gram sequence of the note-count sequence. Simulation results show that the proposed algorithm works successfully to a certain degree in score image-based retrieval for an erroneous OMR output.
협력 필터링은 가장 성공적으로 사용되는 추천 시스템의 방법으로서, 서적, 음악 등 다방면의 상업 시스템에서 활용되어왔다. 이러한 방법의 핵심은 사용자에게 가장 적합한 추천인들을 선정하는 것인데, 이를 위하여 다양한 유사도 측정 방법이 연구되었다. 본 연구에서는 추천 성능의 향상을 위하여 기존의 유사도 값에 근거한 추천인 선정의 문제점을 파악하고 이의 개선책으로서 유사도 값과 공통평가항목수의 비율을 기준으로 하여 가변적으로 추천인을 결정하는 방법을 제시한다. 실험을 통하여 다양한 기준값에 대해 성능 변화를 관찰한 결과, 예측 성능과 추천 성능의 두 측면 모두에서 제안 방법이 매우 향상된 결과를 가져왔으며, 특히 주어진 기준값을 만족하는 추천인 수가 적을 때에도 향상된 성능 결과를 보였다.
본 연구는 음악의 내용에 해당하는 음렬 패턴을 대상으로 분류자질을 선정하고 이를 기준으로 음렬간 유사도를 측정한 후 음렬간 군집을 형성하였다. 이는 내용기반음악검색 시스템에서 유사한 음렬을 검색 결과로 제시함으로써 이용자 탐색을 용이하게 하기 위함이다. 실험문헌집단으로는 $\ulcorner$A Dictionary of Musical Themes$\lrcorner$에 수록된 주제소절의 kern 형식 파일을 사용하였으며, 음렬 처리도구로는 Humdrum Toolkit version 1.0을 사용하였다. 음렬의 분절 여부와 시작 위치에 따른 네 가지 형태의 유사도 행렬을 대상으로 계층적 클러스터링 기법을 사용하여 유사한 음렬간 군집을 형성하였다. 이들 결과에 대한 평가는 외적 기준이 되는 수작업 분류표가 있는 경우 WACS 척도를 사용하였고, 음렬 내 임의의 위치에서부터 시작한 음렬을 대상으로 한 경우, 클러스터링 결과로부터 얻어낸 군집 내 공통 자질 패턴 분포를 통해 내적 기준을 마련하여 평가하였다. 평가 결과에 의하면 음렬의 시작 위치와 무관하게 분절한 자질을 사용하여 클러스터링한 결과가 그렇지 않은 것에 비해 뚜렷한 차이를 보이며 높게 나타났다.
디지털 기술과 인터넷의 발전은 콘텐츠 산업에 큰 변화를 가져왔다. 이러한 변화에 발맞추기 위하여 저작권법 또한 여러 개정 작업을 거쳤고, 2006년 개정에서 "디지털음성송신" 개념이 도입되었다. 그러나 현행법상 디지털음성송신의 개념은 방송 및 전송과의 구분 기준이 추상적이고 명확하지 못한 문제점이 있다. 이러한 모호성으로 인해 새롭게 등장한 "프리리슨"과 같은 음악 웹캐스팅 서비스들의 법적 지위에 대해 판단하기 어려운 상황이다. 이들 서비스는 디지털음성송신을 표방하고 있으나, 그 편의성과 효용에 있어 전송과의 유사성으로 인해 "유사전송"이라는 새로운 개념을 탄생시켰다. 이러한 문제는 기술의 발전과 법체계의 불균형에서 비롯된 것으로 해결을 위해 규율 체계의 변화가 불가피 하다. 따라서 본 연구에서는 관련 사례와 미국의 저작권법 규정을 검토하여 유사전송 문제에 대한 해결방안을 논의한다. 유사전송 문제를 어떠한 법적 기준으로 판단할 것인지와 음반시장에 가져올 수 있는 실질적인 피해를 줄일 수 있는 입법 방안을 제시한다.
2001년 비트토렌트 프로토콜이 설계된 후로 음악, 영화, 소프트웨어 등 모든 것을 다운로드할 수 있게 되었다. 이를 통해 저작권이 있는 파일이 무분별하게 공유가 되었고 저작권자들은 많은 피해를 입었다. 이 문제를 해결하기 위해 국가에서는 관련법을 제정하였고 ISP는 불법 사이트를 차단하였다. 이러한 노력들에도 불구하고 pirate bay와 같은 불법 사이트들은 도메인을 바꾸는 등 쉽게 사이트를 재오픈하고 있다. 이에 우리는 재오픈된 불법 사이트를 쉽게 탐지하는 기술을 제안한다. 이 자동화 기술은 구글 검색엔진을 이용하여 도메인을 수집하고, 최장공통부분수열(LCS) 알고리즘을 이용하여 기존 웹페이지 태그와 검색된 웹페이지 태그를 비교, 유사도를 측정한다. 실험을 위해 총 2,383개의 검색 결과를 구글 검색으로 얻었다. LCS 유사도 알고리즘을 적용하여 검사한 결과 44개의 해적 사이트를 탐지하였다. 또한 해외 불법 사이트에 적용한 결과 805개 검색 도메인에서 23개의 불법 사이트를 탐지하였다. 이를 통해 제안된 탐지 자동화 기술을 사용한다면 불법 사이트가 재 오픈을 하더라도 쉽게 탐지할 것으로 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.