• 제목/요약/키워드: Music Similarity

검색결과 88건 처리시간 0.025초

다중레벨 벡터양자화 기반의 유사도를 이용한 자동 음악요약 (Automatic Music Summarization Using Similarity Measure Based on Multi-Level Vector Quantization)

  • 김성탁;김상호;김회린
    • The Journal of the Acoustical Society of Korea
    • /
    • 제26권2E호
    • /
    • pp.39-43
    • /
    • 2007
  • Music summarization refers to a technique which automatically extracts the most important and representative segments in music content. In this paper, we propose and evaluate a technique which provides the repeated part in music content as music summary. For extracting a repeated segment in music content, the proposed algorithm uses the weighted sum of similarity measures based on multi-level vector quantization for fixed-length summary or optimal-length summary. For similarity measures, count-based similarity measure and distance-based similarity measure are proposed. The number of the same codeword and the Mahalanobis distance of features which have same codeword at the same position in segments are used for count-based and distance-based similarity measure, respectively. Fixed-length music summary is evaluated by measuring the overlapping ratio between hand-made repeated parts and automatically generated ones. Optimal-length music summary is evaluated by calculating how much automatically generated music summary includes repeated parts of the music content. From experiments we observed that optimal-length summary could capture the repeated parts in music content more effectively in terms of summary length than fixed-length summary.

A Comparative Analysis of Music Similarity Measures in Music Information Retrieval Systems

  • Gurjar, Kuldeep;Moon, Yang-Sae
    • Journal of Information Processing Systems
    • /
    • 제14권1호
    • /
    • pp.32-55
    • /
    • 2018
  • The digitization of music has seen a considerable increase in audience size from a few localized listeners to a wider range of global listeners. At the same time, the digitization brings the challenge of smoothly retrieving music from large databases. To deal with this challenge, many systems which support the smooth retrieval of musical data have been developed. At the computational level, a query music piece is compared with the rest of the music pieces in the database. These systems, music information retrieval (MIR systems), work for various applications such as general music retrieval, plagiarism detection, music recommendation, and musicology. This paper mainly addresses two parts of the MIR research area. First, it presents a general overview of MIR, which will examine the history of MIR, the functionality of MIR, application areas of MIR, and the components of MIR. Second, we will investigate music similarity measurement methods, where we provide a comparative analysis of state of the art methods. The scope of this paper focuses on comparative analysis of the accuracy and efficiency of a few key MIR systems. These analyses help in understanding the current and future challenges associated with the field of MIR systems and music similarity measures.

커버곡 검색 정확도 향상을 위한 적합도 기반 크로마그램 쌍별 유사도 (A relevance-based pairwise chromagram similarity for improving cover song retrieval accuracy)

  • 서진수
    • 한국음향학회지
    • /
    • 제43권2호
    • /
    • pp.200-206
    • /
    • 2024
  • 음악 유사도 계산은 음악 검색 서비스 구현에서 중요한 구성 요소 중 하나이다. 본 논문은 커버곡 검색 성능을 제고하기 위해서, 크로마그램 벡터 별로 커버곡 검색 적합도를 구하여 음악 유사도 계산 시 가중치로 활용한다. 커버곡 검색 적합도는 확률 적합도 모델을 이용하여 구한다. 커버곡 검색에 도움이 될 수 있는 분별도가 높은 벡터에 높은 가중치를 부여하고, 흔하게 존재하여 분별도가 떨어지는 벡터에 낮은 가중치를 부여하는 방식으로 음악 유사도 함수를 유도한다. 두 가지 커버곡 실험 데이터셋에서 성능 비교를 수행하여 제안한 음악 유사도 함수가 커버곡 검색 성능을 개선시킬 수 있음을 보였다.

커버곡 검색을 위한 확률적 선형 판별 분석 기반 음악 유사도 (A music similarity function based on probabilistic linear discriminant analysis for cover song identification)

  • 서진수;김정현;김혜미
    • 한국음향학회지
    • /
    • 제41권6호
    • /
    • pp.662-667
    • /
    • 2022
  • 음악 유사도 계산은 음악 검색 서비스 구현에서 가장 중요한 요소 중 하나이다. 본 논문은 커버곡 검색의 성능을 제고하기 위한 음악 유사도 학습에 대해서 다룬다. 음악 유사도 함수를 유도하는 데 확률적 선형 판별 분석을 이용하여 잠재 음악 공간을 구한다. 잠재 음악 공간은 같은 커버곡 간의 거리는 줄이고 다른 곡 간의 거리는 크게 되도록 학습한다. 추출된 음악 특징이 잠재 음악 변수에서 생성되었다는 가정 하에 확률 모델을 구하고, 음악의 동질성 여부를 가설검증하여 음악 유사도 함수를 유도한다. 두 가지 커버곡 실험 데이터셋에서 성능 비교를 수행하여 제안한 음악 유사도 함수가 커버곡 검색 성능을 개선시킬 수 있음을 보였다.

Automatic Music Summarization Using Vector Quantization and Segment Similarity

  • Kim, Sang-Ho;Kim, Sung-Tak;Kim, Hoi-Rin
    • The Journal of the Acoustical Society of Korea
    • /
    • 제27권2E호
    • /
    • pp.51-56
    • /
    • 2008
  • In this paper, we propose an effective method for music summarization which automatically extracts a representative part of the music by using signal processing technology. Proposed method uses a vector quantization technique to extract several segments which can be regarded as the most important contents in the music. In general, there is a repetitive pattern in music, and human usually recognizes the most important or catchy tune from the repetitive pattern. Thus the repetition which is extracted using segment similarity is considered to express a music summary. The segments extracted are again combined to generate a complete music summary. Experiments show the proposed method captures the main theme of the music more effectively than conventional methods. The experimental results also show that the proposed method could be used for real-time application since the processing time in generating music summary is much faster than other methods.

음악 특징점간의 유사도 측정을 이용한 동일음원 인식 방법 (Same music file recognition method by using similarity measurement among music feature data)

  • 성보경;정명범;고일주
    • 한국컴퓨터정보학회논문지
    • /
    • 제13권3호
    • /
    • pp.99-106
    • /
    • 2008
  • 최근 다양한 분야에서(웹 포털, 유료 음원서비스 등) 디지털 음악의 검색이 사용되고 있다. 기존의 디지털 음악의 검색은 음악 데이터에 포함된 자체 메타 정보를 이용하여 이루어진다. 하지만 메타 정보가 다르게 작성되었거나 작성되지 않은 경우 정확한 검색은 어렵다. 요즘 이러한 문제의 보완 방안으로 음악자체를 이용하는 내용기반정보 검색 기법에 대한 연구가 이루어지고 있다. 본 논문에서는 음악의 파형에서 추출된 특징 정보간의 유사도 측정을 통하여 동일음원을 인식하는 방법에 대해 논하고자 한다. 디지털 음악의 특징 정보는 단순화시킨 MFCC (Mel Frequency Cepstral Coefficient)를 이용하여 음악의 파형으로부터 추출하였다. 디지털 음악간의 유사도는 Vision 및 Speech Recognition 분야에서 사용되던 DTW (Dynamic Time Warping) 기법을 활용하여 측정하였다. 제안된 동일 음원 인식 방법의 검증을 위한 같은 장르에서 무작위 추출된 1000곡에서 시행한 500번의 검색은 모두 성공했다. 검색에 사용된 500개의 디지털 오디오는 60개의 디지털음원을 압축방식과 비트율을 다르게 조합하여 만들었다. 실험의 결과로 DTW을 이용한 유사도 측정법이 동일음원을 인식할 수 있음을 증명하였다.

  • PDF

알파 다이버전스를 이용한 무게중심 모델 기반 음악 유사도 (Centroid-model based music similarity with alpha divergence)

  • 서진수;김정현;박지현
    • 한국음향학회지
    • /
    • 제35권2호
    • /
    • pp.83-91
    • /
    • 2016
  • 음악 유사도 계산은 음악 검색 및 분류 등의 정보 처리 시스템 구현에 있어서 가장 중요한 부분이다. 본 논문은 최근 제안된 무게중심 모델을 이용한 음악 검색 방법에 대해서 살펴보고, 무게중심 모델의 확률 분포 유사도를 이용하여 음악 검색을 수행하고 성능을 평가하였다. 확률 분포간의 거리는 주어진 두 개의 확률 분포가 특정 기준에서 얼마나 가까운 지를 계산하는 것으로 다이버전스라고 불리기도 한다. 본 논문에서는 무게중심 모델에서 확률 분포 간의 거리 비교 시에 알파 다이버전스를 활용하였다. 알파 다이버전스는 알파 값에 따라 다양한 형태를 가지며, 널리 사용되고 있는 KLD(Kullback-Leibler)와 BD(Bhattacharyya Distance)를 포함한다. 음악 장르와 가수 데이터셋에서 검색 실험을 수행했고, 확률 분포 거리 기반 유사도와 벡터 거리 기반 유사도의 음악 검색 성능을 비교하였다. 알파 다이버전스를 통해서 무게중심 모델 기반 음악 검색 성능을 개선시킬 수 있음을 보였다.

Music Similarity Search Based on Music Emotion Classification

  • Kim, Hyoung-Gook;Kim, Jang-Heon
    • The Journal of the Acoustical Society of Korea
    • /
    • 제26권3E호
    • /
    • pp.69-73
    • /
    • 2007
  • This paper presents an efficient algorithm to retrieve similar music files from a large archive of digital music database. Users are able to navigate and discover new music files which sound similar to a given query music file by searching for the archive. Since most of the methods for finding similar music files from a large database requires on computing the distance between a given query music file and every music file in the database, they are very time-consuming procedures. By measuring the acoustic distance between the pre-classified music files with the same type of emotion, the proposed method significantly speeds up the search process and increases the precision in comparison with the brute-force method.

Massive Music Resources Retrieval Method Based on Ant Colony Algorithm

  • Yun Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1208-1222
    • /
    • 2024
  • Music resources are characterized by quantization, diversification and complication. With the rapid increase of the demand for music resources, the storage of music resources is very large. In order to improve the retrieval effect of music resources, a massive music resources retrieval method based on ant colony algorithm is proposed to effectively use music resources. This paper constructs autocorrelation function to extract pitch feature of music resource, classifies the music resource information by calculating feature similarity. Using ant colony algorithm to correlate the feature of music resource, gain the result of correlative, locate the result of detection and get the result of multi-module. Simulation results show that the proposed method has high precision and recall, short retrieval time and can effectively retrieve massive music resources.

Ranking Tag Pairs for Music Recommendation Using Acoustic Similarity

  • Lee, Jaesung;Kim, Dae-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권3호
    • /
    • pp.159-165
    • /
    • 2015
  • The need for the recognition of music emotion has become apparent in many music information retrieval applications. In addition to the large pool of techniques that have already been developed in machine learning and data mining, various emerging applications have led to a wealth of newly proposed techniques. In the music information retrieval community, many studies and applications have concentrated on tag-based music recommendation. The limitation of music emotion tags is the ambiguity caused by a single music tag covering too many subcategories. To overcome this, multiple tags can be used simultaneously to specify music clips more precisely. In this paper, we propose a novel technique to rank the proper tag combinations based on the acoustic similarity of music clips.