• Title/Summary/Keyword: Music Engineering

Search Result 612, Processing Time 0.026 seconds

Convergence Decision Method Using Eigenvectors of QR Iteration (QR 반복법의 고유벡터를 이용한 수렴 판단 방법)

  • Kim, Daehyun;Lee, Jingu;Jeong, Seonghee;Lee, Jaeeun;Kim, Younglok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.868-876
    • /
    • 2016
  • MUSIC (multiple signal classification) algorithm is a representative algorithm estimating the angle of arrival using the eigenvalues and eigenvectors. Generally, the eigenvalues and eigenvectors are obtained through the eigen-analysis, but this analysis requires high computational complexity and late convergence time. For this reason, it is almost impossible to construct the real-time system with low-cost using this approach. Even though QR iteration is considered as the eigen-analysis approach to improve these problems, this is inappropriate to apply to the MUSIC algorithm. In this paper, we analyze the problems of conventional method based on the eigenvalues for convergence decision and propose the improved decision algorithm using the eigenvectors.

A Super-resolution TDOA estimator using Matrix Pencil Method (Matrix Pencil Method를 이용한 고분해능 TDOA 추정 기법)

  • Ko, Jae Young;Cho, Deuk Jae;Lee, Sang Jeong
    • Journal of Navigation and Port Research
    • /
    • v.36 no.10
    • /
    • pp.833-838
    • /
    • 2012
  • TDOA which is one of the position estimation methods is used on indoor positioning, jammer localization, rescue of life, etc. due to high accuracy and simple structure. This paper proposes the super-resolution TDOA estimator using MPM(Matrix Pencil Method). The proposed estimator has more accuracy and is applicable to narrowband signal compared with the conventional cross-correlation. Furthermore, its complexity is low because obtained data directly is used for construction of matrix unlike the MUSIC(Multiple Signal Classification) which is one of the well-known super-resolution estimator using covariance matrix. To validate the performance of proposed estimator, errors of estimation and computational burden is compared to MUSIC through software simulation.

Integrating Math and Music: Teaching Ideas

  • NOH, Jihwa;HUH, Nan
    • Research in Mathematical Education
    • /
    • v.19 no.3
    • /
    • pp.177-193
    • /
    • 2015
  • Mathematical creativity, an important goal in mathematics education, can be promoted through an integrated learning environment where students explore mathematics with other subject areas such as science, technology, engineering and art. Establishing such learning environments is not a trivial task. Therefore, this creates a need for the development of instructional resources promoting meaningful integration. This paper focuses on integration of the fields of mathematics and music. Beginning with some of the historical discoveries and views of the connections between mathematics and music, this paper attends to several musical concepts correlating to middle school mathematical content and then provides ideas for teaching.

Realization of Digital Music Synthesizer Using a Frequency Modulation (FM 방식을 이용한 디지탈 악기음 합성기의 구현)

  • 주세철;김진범;김기두
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.7
    • /
    • pp.1025-1035
    • /
    • 1995
  • In this paper, we realize a real time digital FM synthesizer based on genetic algorithm using a general purpose digital signal processor. Especially, we synthesize diverse music sounds nicely using a synthesis model consisting of a single modulator and multiple carriers. Also we present genetic algorithm-based technique which determines optimal parameters for reconstruction through FM synthesis of a sound after analyzing the spectrum of PCM data as a standard music sound using FFT. Using the suggested parameter extractiuon algorithm, we extract parameters of several instruments and then synthesize digital FM sounds. To verify the validity of the parameter extraction algorithm as well as realization of a real time digital music synthesizer, the evaluation is first done by listening the sound directly as subjective test. Secondly, to evaluate the synthesized sound objectively with an engineering sense, we compare the synthesized sound with an original one in a time domain and a frequency domain.

  • PDF

A Novel Speech/Music Discrimination Using Feature Dimensionality Reduction

  • Keum, Ji-Soo;Lee, Hyon-Soo;Hagiwara, Masafumi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • In this paper, we propose an improved speech/music discrimination method based on a feature combination and dimensionality reduction approach. To improve discrimination ability, we use a feature based on spectral duration analysis and employ the hierarchical dimensionality reduction (HDR) method to reduce the effect of correlated features. Through various kinds of experiments on speech and music, it is shown that the proposed method showed high discrimination results when compared with conventional methods.

A Study of the Acoustical Properties of the Mechanical Heart Valve Using MUSIC (MUSIC을 이용한 기계식 심장 판막의 음향 신호 특성 연구)

  • Yi S. W.;Choi M. J.;Min B. G.
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.131-134
    • /
    • 1999
  • This paper considers the acoustical characteristics of the mechanical valve employed in the Korean type Artificial Heart. $Bj\"{o}rk-Shiley$ tilting disc valve was chosen for the study and acoustic measurements were performed for the artificial heart operated in a mock circulation system as well as implanted to an animal as a Bi Ventricular Assist Device (BVAD). In the mock system, three different conditions of the valve were examined which were normal, damaged (torn off), pseudothrombus attached. Microphone measurements for the BVAD were carried out at a regular time interval for 5 days after the implantation operation. Of the recorded acoustic emissions from the artificial heart, click sounds mainly originated from the valves were further analyzed using Multiple Signal Classification (MUSIC) for estimating their spectral properties. It was shown that the spectral peaks below 4 kHz and the optimal order number for MUSIC, equivalent to the number of the spectral component, might be the key parameters which were highly correlated to the physiological states of the valve like the mechanical damage of the valve or the formation of thrombus on the valves.

  • PDF

Multiple octave-band based genre classification algorithm for music recommendation (음악추천을 위한 다중 옥타브 밴드 기반 장르 분류기)

  • Lim, Shin-Cheol;Jang, Sei-Jin;Lee, Seok-Pil;Kim, Moo-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1487-1494
    • /
    • 2011
  • In this paper, a novel genre classification algorithm is proposed for music recommendation system. Especially, to improve the classification accuracy, the band-pass filter for octave-based spectral contrast (OSC) feature is designed considering the psycho-acoustic model and actual frequency range of musical instruments. The GTZAN database including 10 genres was used for 10-fold cross validation experiments. The proposed multiple-octave based OSC produces better accuracy by 2.26% compared with the conventional OSC. The combined feature vector based on the proposed OSC and mel-frequency cepstral coefficient (MFCC) gives even better accuracy.

Rough Set-Based Approach for Automatic Emotion Classification of Music

  • Baniya, Babu Kaji;Lee, Joonwhoan
    • Journal of Information Processing Systems
    • /
    • v.13 no.2
    • /
    • pp.400-416
    • /
    • 2017
  • Music emotion is an important component in the field of music information retrieval and computational musicology. This paper proposes an approach for automatic emotion classification, based on rough set (RS) theory. In the proposed approach, four different sets of music features are extracted, representing dynamics, rhythm, spectral, and harmony. From the features, five different statistical parameters are considered as attributes, including up to the $4^{th}$ order central moments of each feature, and covariance components of mutual ones. The large number of attributes is controlled by RS-based approach, in which superfluous features are removed, to obtain indispensable ones. In addition, RS-based approach makes it possible to visualize which attributes play a significant role in the generated rules, and also determine the strength of each rule for classification. The experiments have been performed to find out which audio features and which of the different statistical parameters derived from them are important for emotion classification. Also, the resulting indispensable attributes and the usefulness of covariance components have been discussed. The overall classification accuracy with all statistical parameters has recorded comparatively better than currently existing methods on a pair of datasets.

Score Image Retrieval to Inaccurate OMR performance

  • Kim, Haekwang
    • Journal of Broadcast Engineering
    • /
    • v.26 no.7
    • /
    • pp.838-843
    • /
    • 2021
  • This paper presents an algorithm for effective retrieval of score information to an input score image. The originality of the proposed algorithm is that it is designed to be robust to recognition errors by an OMR (Optical Music Recognition), while existing methods such as pitch histogram requires error induced OMR result be corrected before retrieval process. This approach helps people to retrieve score without training on music score for error correction. OMR takes a score image as input, recognizes musical symbols, and produces structural symbolic notation of the score as output, for example, in MusicXML format. Among the musical symbols on a score, it is observed that filled noteheads are rarely detected with errors with its simple black filled round shape for OMR processing. Barlines that separate measures also strong to OMR errors with its long uniform length vertical line characteristic. The proposed algorithm consists of a descriptor for a score and a similarity measure between a query score and a reference score. The descriptor is based on note-count, the number of filled noteheads in a measure. Each part of a score is represented by a sequence of note-count numbers. The descriptor is an n-gram sequence of the note-count sequence. Simulation results show that the proposed algorithm works successfully to a certain degree in score image-based retrieval for an erroneous OMR output.