• Title/Summary/Keyword: Muscovite

Search Result 213, Processing Time 0.026 seconds

A Study on the Geotechnical Assessment of Sedimentary Rock due to Weathering in Taegu area (대구지역 퇴적암의 풍화도판단 기술 연구)

  • 김영수;김교원;허노영;예대호;이재호;최정호
    • Proceedings of the KSEG Conference
    • /
    • 2001.03a
    • /
    • pp.15-22
    • /
    • 2001
  • 퇴적암의 풍화특성을 파악하기 위해서는 풍화과정을 지배하는 암석의 광물 조성과 화학성분에 대한 연구가 필요하다. 본 논문에서는 풍화정도에 따른 퇴적암의 특성을 고찰하기 위해서 대구지역에 분포하고 있는 퇴적암을 채취하여 화학 및 광물성분 분석과 시간경과에 따른 물리 및 역학특성 시험을 실시하였다. 퇴적암에 대한 풍화판정법은 시험결과 Parker의 풍화지수식이 잘 일치하였고 모암에 함유된 $Al_2$O$_3$, CaO, $Na_2$O, $K_2$O, MgO등의 화학성분과 조장석(Albite, Ab), 백운모(Muscovite, Ms), 마그네타이트(Magenetite, Mt)등의 광물성분이 풍화와 밀접한 관계가 있었으며, 또한 암석의 풍화정도와 공학적 성질에 대한 상관관계식을 제안하였다.

  • PDF

Petrochemical Study on the Precambrian Granitic Rocks in the Basement Area of Hambaeg Basin (함백익지(咸白益地) 기반지역(基盤地域)에 분포(分布)하는 선(先)캠브리아 화강암질암류(花崗岩質岩類)의 암석화학적(岩石化學的) 연구(硏究))

  • Yun, Hyun Sao;Lee, Dai Sung
    • Economic and Environmental Geology
    • /
    • v.19 no.1
    • /
    • pp.35-55
    • /
    • 1986
  • The area of this study is located in the Sang dong district, Youngwol Gun, Kangwon Do, where the Ogcheon fold belt comes into contact with the Ryongnam massif. The area is covered by the Precambrian metasedimentary rocks of Yulri Group in the south from the line of Ungyosan-Maebongsan-Jansan-Taebaegsan Mountains and by the Cambro-Ordovician sedimentary rocks of Choseon Supergroup in the north. The Choseon Supergroup unconformably overlies the Yulri group. Several granitic intrusives occur in the Precambrian and Cambro-Ordovician terrain. The purpose of this study is to clarify the geochronology, mineralogical composition, geochemical characteristics, petrogenesis and tectonic settings of the Precambrian granitic rocks, and to evaluate the P.T. conditions of granitic intrusions. The K/Ar ages obtained from the muscovite of Nonggeori Granite, Naedeogri granite and pegmatite intruded into the Yulri Group are Early Proterozoic ($1805{\pm}18Ma$ to $1642{\pm}23Ma$), and those from the migmatitic pegmatite are Late Carboniferous ($305{\pm}4Ma$), respectively. The Precambrian granitic rocks are characterized by the presence of muscovite, tourmaline and grey feldspar with faint lineation of mafic minerals. In terms of mineralogical and chemical composition, the granitic rocks are felsic, calc-alkalic, peraluminous and S-type (ilmenite-series). The geochemical characteristics of major and trace elements indicate that the granitic rocks belong to syn-collision setting at the compressional plate margin. They were formed by progressive melting of relatively homogeneous crustal materials under 1~3kb and $670^{\circ}{\sim}720^{\circ}C$ in aqueous fluid conditions, and the Naedeogri granite was more fractionated than the Nonggeori granite. During the Taebaeg disturbance, Nonggeori granite, Naedeogri granite and pegmatite were intruded and emplaced into the Yulri Group. Migmatitic pegmatite occurring in the southwestern area, however, gave much younger muscovite age than the pegmatite intruded into the Yulri Group in rest of the area did, that might be due to the regional metamorphism of the Post-Choseon disturbance. The Geodo granitic mass and the Imog granite were intruded during the Bulgugsa disturbance.

  • PDF

Mineral Chemistry and Stable Isotope Composition of Sericite from the Sangdong Sericite Mine in the Kimhae Area (김해지역 상동광상산 견운모의 광물화학 및 안전동위원소 조성)

  • Kim, Jong Dae;Moon, Hi-Soo;Jin, Sheng-Jin;Kim, In Joon
    • Economic and Environmental Geology
    • /
    • v.25 no.3
    • /
    • pp.275-282
    • /
    • 1992
  • Mineral chemistry and stable isotope compositions of sericites from the Sangdong mine in the Kimhae area, Kyungsangnamdo, were studied. The Sangdong sericite deposit occurs in rhyolitic tuff of late Cretaceous age and considers to have been fonned by the hydrothennal alteration. The sericites are classified as $2M_1$ polytype and are characterized by less celadonite substitution indicating muscovite-phengite series. Their compositions are very close to that of the ideal muscovite but net layer charge ranges 1.71~1.91 which is less than 2 per formula unit of ideal muscovite. Predominant interlayer cation is K and K/(K+Na) ratio ranges 0.91 and 0.93. ${\delta}^{18}O$ values of sericites and quartz separated from the ore range 7.70~9.07 and 8.20~10.87‰, respectively. The formation temperature of sericite can be estimated as $315{\sim}340^{\circ}C$( based on ${\delta}^{18}O$ value of sericite and ${\delta}D$ value of of Cretaceous meteoric water. Their formation temperature discrepancy between coexisting sericite and quartz indicates that they are in isotopically inequilibrium. Two types of quartz, coarse grained phenocrysts and micrcrystalline aggregates are observed and the former must have been formed during volcanic eruption and remained isotopically unexchanged during hydrothermal alteration period. ${\delta}^{14}S$ values of pyrites range 1.9~4.5‰ which is within a range of volcanogenic sulfur, indicating magmatic source.

  • PDF

Mineral Compositions of Granitic Rocks in the Yeongkwang-Naju Area (영광-나주지역에 분포하는 화강암류의 광물성분에 대한 연구)

  • Park, Jae-Bong;Kim, Yong-Jun
    • Economic and Environmental Geology
    • /
    • v.45 no.5
    • /
    • pp.535-549
    • /
    • 2012
  • Main aspect of this study are to clarify mineral compositions on granites in Youngkwang-Naju area. These granites are is divided into four rock facies based on the geologic ages, mineralogical composition and chemical constituents, and texture : hornblende-biotite granodiorite, biotite granite, porphyritic granite and two mica granite. These granites constitude an igneous complex formed by a series of differentiation from cogenetic magma. In compressive stress field between the Ogcheon folded belt and the Youngnam massif, the foliated and undeformed granites had formed owing to heterogeneous distribution of stress. The geochemical data of study area indicate magma of these rocks would had been generated by melting in lower and middle crust. The major minerals of granitic rocks in study area are plagioclase, biotite, muscovite and hornblende. Plagioclase range in composition from oligoclase ($An_{19.3-27.7}$) to andesine ($An_{28.4-31}$), and shows normal zoning patterns, This uniformed composition indicated slow crystallization, and it is obvious that the growth of these crystal occurred before final consolidation of the magma. The Mg content of biotite are increases with increasing of $f_{O2}$ and grade of differentiation, changing from phlogopite to siderophyllite. Its $Al^{iv}$/$Al^{total}$ ratios are propertional to bulk rock alumina content. Muscovite is primary in origin with high content of $TiO_2$, and Its composition correspond to celadonitic muscovite. Hornblende indicated calc amphibole group ($(Ca+Na)_{M4}{\geq}1.43$, $Na_{M4}<0.67$). and consolidation pressure of granitic body by geobarometer of Hammerstrume and Zen show 11.3~17.2 Km.

Geochemistry and Mineralogy of Metapelite and Barium-Vanadium Muscovite from the Ogcheon Supergroup of the Deokpyeong Area, Korea (덕평지역(德平地域)의 옥천누층군(沃川累層群)에 분포(分布)하는 변성이질암(變成泥質岩)과 바륨-바나듐 백운모(白雲母)의 지구화학적(地球化學的) 및 광물학적(鑛物學的) 특성(特性))

  • Lee, Chan Hee;Lee, Hyun Koo
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.35-49
    • /
    • 1997
  • The coal formation of the Deokpyeong area are interbedded along metapelites of the Ogcheon Supergroup, which are composed mainly of graphite, quartz, muscovite and associated with small amounts of biotite, chlorite, pyrite and barite. The ratios of $SiO_2/Al_2O_3$, $Al_2O_3/Na_2O$ and $K_2O/Na_2O$ of the coaly metapelite are variable and wide range from 1.80 to 10.21, from 27.8 to 388.8 and from 7.6 to 61.8, respectively. These coal formation were deposited in basin of marine environments, and the REE of these rocks are not influenced with metamorphism and hydrothermal alterations on the basis of $Al_2O_3$ versus La, La against Ce, the ratios of La/Ce (0.19 to 0.99) and Th/U (0.02 to 4.75). These rocks also show much variation in $La_N/Yb_N$ (1.19 to 22.89), Th/Yb (0.14 to 21.43) and La/Th (0.44 to 13.67), and their origin is explained by derivation from a mixture of sedimentary and igneous rocks. The wide range in trace and REE element characteristics as Co/Th (0.12 to 2.78), La/Sc (0.33 to 10.18), Sc/Th (0.57 to 5.73), V/Ni (8 to 2347), Cr/V (0.02 to 0.67) and Ni/Co (1.56 to 32.95) of these coaly metapelites argues for inefficient mixing of the various source lithologies during sedimentation. Deep to pale green barium-vanadium muscovites (vanadium-oellacherite) have been found in this coal formations. Modes of occurrence and grain size of muscovite are heterogeneous, but most of the barium and vanadium-bearing muscovites occur along the boundaries between graphite and quartz grains, ranging from 200 to $350{\mu}m$ in length and from 40 to $60{\mu}m$ in width. Results of X-ray diffraction data of the minerals characterized to be monoclinic system with $a=5.249{\AA}$, $b=8.939{\AA}$, $c=20.924{\AA}$ and ${\beta}=95.894^{\circ}$. Representative chemical formula of the muscovite was $(Na_{0.09}K_{1.44}Ba_{0.46})(Al_{2.75}Ti_{0.07}V_{0.56}Fe_{0.08}Mg_{0.50})(Si_{6.12}Al_{1.88})O_{22}$. The V possibly substitute octahedral Al, and the Ba is coupled substitution of $K^+Si^{4+}=Ba^{2+}Na^+Ca^{2+}$, which compositional ranges of V and Ba are from 0.42 to 0.69 and from 0.34 to 0.56 based on $O_{22}$, respectively. Formation mechanism of the barium-vanadium muscovites in the coaly metapelite is shown that the formed by high pressure and temperature from regional metamorphism origanated during diagenesis at the interface between a basinal brine and organic matter.

  • PDF

Phyllosilicate Intergrowth/Interlayer in the Southwestern Part of the Okchon Metamorphic Belt: EPMA, BSE and TEM Study (옥천변성대 남서부 지역에서의 Phyllosilicate Intergrowth/Interlayer: EPMA, BSE, TEM 연구)

  • 이정후;이영부;오창환;김선태
    • Journal of the Mineralogical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 1995
  • 옥천 변성대 남서부 지역에서 산출되는 변성 니질암에서는 muscovite, biotite 및 chlorite를 주로하는 phyllosilicate가 서로 intergrowth 또는 interlayer를 이루는 것이 편광현미경 관찰, EPMA 분석, Back Scattered Electron (BSE) image 관찰 및 Transmission Electron Micro-scope(TEM) 관찰을 통하여 확인되었다. 이들 광물들은 편광현미경 관찰에서 흔히 각각의 입자를 식별할 수 없을 정도의 미세 규모로 서로 intergrow 되어 있으며BSE image에서는 0.1$\mu\textrm{m}$ 이하의 아주 작은 크기에서부터 10.0$\mu\textrm{m}$ 정도 크기까지 다양한 규모의 intergrow를 형성하고 있음이 관찰되었다. TEM scale에서는 개별 layer 크기(약 10$\AA$)에서부터 수십 개 layer 크기의 interlayering을 보여준다. 이와 같은 intergrowth 또는 interlayering의 결과로 EPMA 분석에서 종종 보기에는 규진(homogeneous)한 입자라 하더라도 두 개 이상의 광물 성분이 섞여 있는 분석값을 나타내며 이러한 nonstoichiometry는 BSE image에서 interlayer(또는 intergrow) 된 것으로 관찰되는 부분에서 더욱 두드러진다.Chlorite zone에서는 chlorite와 muscovite의 interlayering (C/M)이 주로 발견되며 biotite zone과 garnet zone에서는 chlorite와 biotite의 interlayer (C/B)가 주로 관찰된다. 이는 chlorite zone에서는 속성작용에서 보편적으로 나타나는 C/M으로부터 chlorite가 분리되는 광물반응이 일어나는데 반해서 biotite zone과 garnet zone에서는 chlorite로부터 C/B를 거쳐 biotite를 생성하는 광물반응이 일어나는 것을 의미한다. 이와 같은 현상은 변성작용에서 phollosilicate의 광물반응의 엄밀한 의미에서는 평형(equilibrium) 상태에서 균질한 광물을 생성하기보다는 비평형(disequilibrium) 반응으로 일어난다는 것을 의미한다.

  • PDF

Mineralogical Studies on Korean Ceramic Raw Materials. I (國內 窯業原料의 基礎的 硏究 (第1報))

  • Chi, Ung-Up;Choi, Sang-Eul;Lee, Ung-Sang;Sang, Ki-Nam
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.169-178
    • /
    • 1964
  • Various ceramic raw minerals occuring in Korea were investigated laying emphasis on mineralogical identifications of them. Data of chemical analysis, differential thermal analysis, powder patterns of x-ray diffraction and particle size distribution were obtained for the present study. Hadong kaolin was confirmed as halloysite, and it was found that main constituent of some commercial pyrophyllite is mineralogically not pyrophyllite; Seongsan and Ockmaesan pyrophyllite consist of mainly kaolin group mineral, Tongnae pyrophyllite consists of muscovite, however Milyang and Jindo pyrophyllite is mineralogically pyrophyllite.

  • PDF

Effect of rock mineralogy on mortar expansion

  • Karaman, Kadir;Bakhytzhan, Aknur
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.233-241
    • /
    • 2020
  • Alkali-silica reaction (ASR) is among one of the most important damaging mechanisms in concrete, depending primarily on aggregates which contain reactive minerals. However, expansion in concrete may not directly relate to the reactive minerals. This study aims to investigate the influence of ASR and the expansion of mortar bars depending on aggregate type containing various components such as quartz, clay minerals (montmorillonite and kaolinite) and micas (muscovite and biotite). In this study, the accelerated mortar bar tests (AMBT) were performed in two conditions (mortar bars in the same and sole NaOH solutions). Petrographic thin section studies, X-ray diffraction (XRD) analysis (Rietveld method), scanning electron microscopy (SEM) and chemical analyses were carried out. This study showed that quartzite bars led to increase in expansion values of mortar bars in diabase-1 and andesite when these were in the same NaOH solution. However, three samples (basalt, quartzite and claystone) were found having ASR expansion based on the AMBT when the special molds were used for each sample. SEM study revealed that samples which exhibit highest expansions according to AMBT had a generally rough surface and acicular microstructures in or around the micro-cracks. Basalt and quartzite showed more variable in major oxides than those of other samples based on the chemical analyses, SEM studies and AMBT. This study revealed that the highest expansions were observed to source not only from reactive aggregates but also from alteration products (silicification, chloritization, sericitization and argillisation), phyllosilicates (muscovite, biotite and vermiculite) and clays (montmorillonite and kaolinite).

Mineralogical Study on Shales of the Sadong and Gobangsan Formation, Munkyung Area (문경지역 사동층, 고방산층 셰일에 대한 광물학적 연구)

  • Choi, Seung-Hyun;Mun, Hyang-Ran;Lee, Young-Boo;Lee, Jung-Hoo;Kim, Young-Mi
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The metamorphic environments occrrred in the Sadong and the Gobangsan formations were studied through the investigation of chloritoid and white mica in shales at Munkyung area. Two types of white mica occurs in the shale of Sadong formation; muscovite-dominant ($Mu_{76.1}Pa_{18.1}Ma_{5.8}$) and margarite-dominant ($Ma_{52.9}Mu_{31.6}Pa_{15.5}$). It is inferred that the muscovite-dominant white mica is generated by the diagenesis of Na-rich illite whereas the margarite-dominant white mica is generated by reactions between calcite and pyrophyllite separated from illite. In shales of the Gobangsan formation, chloritoids are observed with muscovite, pyrophyllite and chlorite. The chloritoids of the Gobangsan formation are considered to be originated from the reaction between pyrophyllite and chlorite. The Sadong and Gobangsan formations would have experienced the low-temperature metamorphism (anchizone) considering that white mica in general forms above the temperature of $200^{\circ}C$ and the assemblage of chloritoid-pyrophyllite-chlorite is stabilized below $280^{\circ}C$.