• 제목/요약/키워드: Muscle increase

검색결과 1,838건 처리시간 0.027초

The Effects of Muscle Strengthening of the Ankle Joints on Postural Sway

  • An, Ho Jung;Kang, Min Soo;Park, Yong Nam
    • 국제물리치료학회지
    • /
    • 제4권2호
    • /
    • pp.557-561
    • /
    • 2013
  • The purpose of this study to identified the effect of muscle strengthening of ankle joints on postural sway. The subjects of this study were 29 healthy adults aged between 20 and 30 years(male 18, female 11). All subjects received ankle muscle strengthening exercise for 3 times, 3 sessions, 30 minutes per week over 4weeks period. The measured item of muscle strength, postural sway. Data collected from all subjects the result were as follows. The ankle strength showed significant increase(p<.05). One leg stand test with eye close increase in static balance(p<.05), left-right sway distance and anterior-posterior sway distance with eye open and close in static balance(p<.05). The result findings show that strength of the ankle joint muscles is a factor which affects postural sway and the ankle joints are important in static balance.

경직상태의 근육막에 MgADP를 첨가시킨 결과에 대한 연구 (A Study on The Effect of Added MgADP to The Rigor Muscle Membrane)

  • 김덕술
    • 한국응용과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.362-368
    • /
    • 2007
  • To study the relationship between elementary biochemical states and structural states of the actomyosin crossbridges in muscle, the effects of binding of MgADP to myosin heads in the rigor muscle were examined by X-ray diffraction using synchrotron radiation. X-ray diffraction studies have been made to investigate the effects of binding of ADP on the structure of glycerinated rabbit skeletal muscle in the rigor state. The intensity increase was accompanied by a slight but distinct decrease in the 5.9 am layer-line intensity close to the meridian. These results strongly suggest that myosin heads altered their attached conformation in the proximal end toward the plane perpendicular to the fiber axis when MgADP was bound to them. We found that the intensity of the 14.5 nm-based meridional reflections increase by 20-50% when MgADP was added to the rigor muscle in the presence of hexokinase and myokinase inhibitor.

트레드밀 보행시 경사도와 속도에 따른 체간근육과 대퇴사두근의 근활동성 분석 (The Myoelectrical Activities of Trunk Muscle and Quardriceps Femoris According to Treadmill Gait Different Inclination and Speeds)

  • 김병곤;공원태;정연우
    • 대한정형도수물리치료학회지
    • /
    • 제13권1호
    • /
    • pp.44-57
    • /
    • 2007
  • Purpose: The objective of this study is to analyze the activities of muscles importantly functioning when walking with different inclinations and speeds of a treadmill, in order to provide basic data on walking exercise using a treadmill. Method: The selected subjects of this study were 16 men and women who had lower extremity injury. A treadmill was used to provide the activation of muscle, and the electromyography was used to analyze the muscle activity variables. The Biodex was used to measure the value of maximum isometric contraction. The inclinations of the treadmill were 0%, 5% and 10%, respectively, and its speeds were 2Km/h. 3Km/h, 4Km/h, 5Km/h, and 6Km/h, respectively. Result: For quadriceps femoris muscle and trunk muscle, there were significant differences in muscle activity when different speeds were applied at 0%, 5% and 10% inclinations.(p<0.05) The activity of vastus medialis muscle was 9.78% at 0% inclination and 2km/h speed, whereas it was 9.32% at 0% inclination and 3km/h, which was slightly lower. The activity of erector spinae muscle was 24.93% at 0% inclination and 2km/h speed, whereas it was 24.84% at 0% inclination and 3km/h, whereas it was 23.99% at 0% inclination and 4km/h, which was slightly lower. The activity of vastus medialis muscle was 11.89% at 10% inclination and 2km/h speed, whereas it was 10.65% at 10% inclination and 3km/h, which was slightly lower. The activity of rectus femoris muscle was 10.26% at 10% inclination and 2km/h speed, whereas it was 9.77% at 10% inclination and 3km/h, which was slightly lower. Conclusion: It was found that the activities of trunk muscle and quadriceps femoris muscle increase as the inclination and the speed of a treadmill increase during treadmill walking.

  • PDF

Effects of ursolic acid on muscle mass and bone microstructure in rats with casting-induced muscle atrophy

  • Kang, Yun Seok;Noh, Eun Bi;Kim, Sang Hyun
    • 운동영양학회지
    • /
    • 제23권3호
    • /
    • pp.45-49
    • /
    • 2019
  • [Purpose] Recent studies suggest that ursolic acid (UA) is a potential candidate for a resistance exercise mimetic that can increase muscle mass and alleviate the deleterious effect of skeletal muscle atrophy on bone health. However, these studies evaluated the effects of UA on skeletal muscle and bone tissues, and they have not verified whether such effect could occur concurrently on muscle and bone, as is the case with resistance exercise. Thus, the aim of this study was to analyze the effect of UA injection on muscle mass and bone microstructure using an animal model of atrophy to demonstrate the potential of UA as a resistance exercise mimetic. [Methods] The immobilization (IM) method was used on the left hindlimb of Sprague Dawley (SD) rats for 10 days to induce muscle atrophy, whereas the right hindlimb was used as an internal control (IC). The animal models were divided into two groups, SED (sedentary, n=6) and UA (n=6) to demonstrate the effect of UA on atrophic skeletal muscles. The UA group received a daily intraperitoneal injection of UA (5 mg/kg/day) for 8 weeks. After 10 days of IM, the data collected for the IC were compared with that of IM to determine whether muscle atrophy might occur. [Results] Muscle atrophy was induced and bone mineral density (BMD) decreased significantly. The 8-week UA treatment significantly increased the gastrocnemius muscle mass compared to the SED group. In regard to the effect of UA on bones, negative results such as a decrease in BMD, trabecular bone volume fraction, and trabecular number, and an increase in trabecular separation, were observed in the SED group, but no such difference was observed in the UA group. No significant difference was observed in atrophic hindlimbs between SED and UA groups. [Conclusion] These results alone are insufficient to suggest that UA is a potential resistance exercise mimetic for atrophic skeletal muscle and weakened bone. However, this study will help determine the potential of UA as a resistance exercise mimetic.

Effects of the Abdominal Hollowing Technique Applied during Plank Exercises at Different Angles between Ground and the Humerus on Abdominal Stabilization Muscle Activity

  • Kim, Jeong Wook;Park, Min Chull
    • The Journal of Korean Physical Therapy
    • /
    • 제32권2호
    • /
    • pp.94-100
    • /
    • 2020
  • Purpose: This study examined the effects of the abdominal hollowing technique applied during plank exercises at different shoulder angles between the ground and the humerus on the abdominal muscle activity Methods: The subjects were 36 male volunteers. They were randomized to perform plank exercises or plank exercises using the hollowing technique at 80˚, 90˚, 100˚, and 110˚ between the ground and the humerus. The abdominis muscles were measured using a surface electromyogram. Independent t-tests examined the changes in the activity of these muscles according to the two exercise methods at each angle. The changes in muscle activity were examined according to the selected angles by one-way analysis of variance. Results: The activity of abdominal muscles was investigated according to the angle between the ground and the humerus during the plank exercise. As a result, the muscle activity increased significantly with decreasing angle in the rectus abdominis, external oblique, and internal oblique·transverse abdominis muscles (p<0.05). In terms of the changes in abdominal muscle activity after hollowing plank exercises at the given angles between the ground and the humerus, an increase in angle resulted in a statistically significant increase in the rectus abdominis muscle activity (p<0.05). The activities of the rectus abdominis, external oblique, and internal oblique/transverse abdominis muscles after hollowing plank exercises showed statistically significant increases (p<0.05) compared to those after plank exercises. Conclusion: The hollowing technique and the increase in the angle between the ground and the humerus may be an effective exercise method for increasing the muscle activity of the abdominis muscles.

성인 여성의 외발 착지 동작 시 무릎관절 근육 피로와 과체중이 충격 흡수에 미치는 영향 (Effects of Knee Joint Muscle Fatigue and Overweight on Shock Absorption during Single-Leg Landing of Adult Women)

  • 김태현;염창홍
    • 한국운동역학회지
    • /
    • 제24권1호
    • /
    • pp.59-66
    • /
    • 2014
  • The purpose of this study was to investigate the effects of knee joint muscle fatigue and overweight on shock absorption during single-leg landing of adult women. Written informed consent forms, which were approved by the human subject research and review committee at Dong-A University, were provided to all subjects. The subjects who participated in this study were divided into 2 groups: a normal weight group and an overweight group, consisting of 15 young women each. Both the normal weight group and the overweight group showed that use soft landing and ankle dominant strategy. The peak vertical ground reaction force, the knee joint absorption power, and eccentric work done, as the increase of knee joint muscle fatigue level, showed a decrease. And the hip joint absorption power and eccentric work done, as the increase of weight, was less than the overweight group showed the normal weight group. In conclusion, the accumulation of the knee joint muscle fatigue and the increase of body weight may lead to an increased risk of injury during landing.

역도 인상동작 수행시 바벨 증가에 따른 EMG 경향성에 대한 연구 (The Research on EMG Tendency Following Increasing Record in Snatch Weightlifting)

  • 문영진;이순호;임비오
    • 한국운동역학회지
    • /
    • 제16권4호
    • /
    • pp.1-12
    • /
    • 2006
  • This research was to know EMG tendency on increasing record in snatch weightlifting. In order to perform this research, we choiced 3 man national weightlifters, EMG analysis were executed on 8 major muscle(Latissimus Dorsi, Trapezius, Anterior Deltoid, Posterior Deltoid, Gastrocenemius, Vastus Medialis, Erector spinae, Abdominal). First trial record of athletics is 80% of each maximal record and increase the $5{\sim}10kg$ gradually. In this study, EMG signal scale of all muscle except posterior Deltoid muscle don't increased according to increasing the barbell weight, This showed a difference between general recognition and experiment result. In posterior Deltoid muscle, EMG signal scale increased according to increasing the barbell weight. It was assumed that EMG signal of protagonist shows possibility of linear increasing if motion have a consistency. It was assumed that In present, In order to increase one's record to $5{\sim}10kg$, Motion consistency training is more effective training method than increasing the muscle force.

Dexamethasone 투여기간중의 규칙적인 운동이 어린쥐의 체중, 뒷다리근 및 부신 무게에 미치는 영향 (Effect of Regular Exercise During Dexamethasone Injection on the Body Weight, Weight of Hindlimb Muscle and Adrenal Gland in Young Rats)

  • 최명애;최정안;신기수
    • 대한간호학회지
    • /
    • 제27권3호
    • /
    • pp.510-519
    • /
    • 1997
  • The purpose of this study was to determine the effect of regular exercise during dexamethasone injection on the body weight, weight of hindlimb muscles and adrenal gland in Young rats. 80-100g Wistar rats were divided into control, exercise, dexamethasone injection(dexa), and exercise during dexamethasone injection(D+E) group. The dexa group received daily subcutaneous injection of dexamethasone at a dose of 5mg/kg body weight for 10 days. The exercise group ran on a treadmill for 60min /day(20 minutes every 4 hour) at l0m/min and a 10$^{\circ}$ grade. The control group received daily subcutaneous injection of normal saline at a dose of 5mg /kg body weight for 10 days. The D+E group ran on a treadmill for 60min /day (20 minutes every 4 hour) at 10m/min and a 10$^{\circ}$ grade. Body weight of both control and exercise group increased significantly until 10 days, that of both dexa and D+E group decreased significantly, resulting in 79.47 and 78.75% decrease respectively compared to the first day of experiment. Body weight and muscle weight of the soleus, plantaris and gastrocnemius decreased significantly with dexamethasone injection. Relative weight of the plantaris and gastrocnemius of the dexa group decreased significantly compared to that of the control group. Body weight and muscle weight of the gastrocnemius of the exercise group increased significantly, and the muscle weight of the soleus and plantaris tended to increase. The Relative weight of the plantaris was comparable to the control group and that of the soleus and gastrocnemius tended to increase in the exercise group. Body weight and muscle weight of the soleus and plantaris of the D+E group showed a tendency to increase, and muscle weight of the gastrocnemius increased significantly compared to the dexa group. The Relative weight of the soleus and gastrocnemius tended to increase, and that of the plantaris of the D+E group increased significantly compared to the dexa group. Body weight, muscle weight and relative weight of the soleus, plantaris and gastrocnemius of the D+E group did not recover to that of the control group. Adrenal gland weight of the dexa and D+E group tended to increase, and that of the exercise group increased significantly. From these results, it can be suggested that regular exercise during dexamethasone injection might attenuate the decrease of body weight and hindlimb muscle weight induced by the dexamethasone injection.

  • PDF

전기자극에 의한 골격근의 근육피로를 고려한 근육모델 (Muscle Model including Muscle Fatigue Dynamics of Stimulated Skeletal Muscle)

  • 임종광;남문현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권11호
    • /
    • pp.1476-1478
    • /
    • 1999
  • A musculotendon model is proposed to predict muscle force during muscle fatigue due to the continuous functional electrical stimulation(FES). Muscle fatigue dynamics can be modeled as the electrical admittance of muscle fibers and included in activation dynamics based on the{{{{ { Ca}^{2+ } }}}} kinetics. The admittance depends on the fatigue variable that monotonically increase or decrease if electrical pulse exists or not, and on the stimulation parameters and the number of applied pulses. In the response of the change in activation the normalized Hill-type contraction dynamics connected with activation dynamics decline the muscle shortening velocity and thus its force under muscle fatigue. The computer simulation shows that the proposed model can express the muscle fatigue and its recovery without changing any stimulation parameters.

  • PDF

Sonogram of coccygeus muscle in dairy cows with different gestational ages

  • Ulum, Mokhamad Fakhrul;Frastantie, Dilla;Purwantara, Bambang
    • Journal of Animal Science and Technology
    • /
    • 제59권12호
    • /
    • pp.26.1-26.8
    • /
    • 2017
  • Background: The change in size and weight of the female reproductive organs during gestation and birth might be affect the perineal muscles and this condition in dairy cow not been reported. This study aimed to assess the ultrasonographic image of coccygeus muscle in 11 inseminated dairy cows with different gestational ages and postpartum. Methods: Gestational age was calculated based on the record of artificial insemination and confirmed by using transrectal brightness mode ultrasonography. Perineal hair between the sacrum and ischium bones was shaved along 3-5 cm before being ultrasound. The images of perineal area were obtained by transcutaneous ultrasound using a 5.0 MHz transducer. The thickness and intensity of the coccygeus muscle were measured and analyzed by gestational status and postpartum to show the differences. Results: The results showed that the thickness of coccygeus muscle increased with the increase in gestational age. Muscle intensity only increased at young gestational age. However, it decreased with the increase in gestational age (P < 0.05). Conclusions: The ultrasound image of coccygeus muscle was affected by gestational status, thus this method may be used as one of the new methods of indirect gestational detection on dairy cows.