• Title/Summary/Keyword: Muscle force

Search Result 820, Processing Time 0.02 seconds

Development of Mathematical Model to Predict Dynamic Muscle Force Based on EMG Signal (근전도로부터 동적 근력 산정을 위한 수학적 모델 개발)

  • 한정수;정구연;이태희;안재용
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.3
    • /
    • pp.315-321
    • /
    • 1999
  • The purpose of this study is to develop a mathematical model for system identification in order to predIct muscle force based on eledromyographic signal. Therefore, a finding of the relalionship between characteristics of electromyographic signal and the corre spondng muscle force should be necessiiry through dynamic, joint model. To develop the dynamic joint model, the upper limb mcludmg the wrist and elbow joint has been considered. The kinematic and dynamic data, such as joint angular displacement, velocity, deceleration along with the moment of inertla, required to establish the dynamic model has been obtained by electrical flexible goniometer which has two degree-of-frcedoms. ln this model, muscle force can be predicted only electromyographs through the relationship between the integrated lorce and the mtegrated electromyographic signal over the duration of muscle contraclion in this study.

  • PDF

Muscle Tone and Somatosensory System acting on This (근육긴장도와 이에 영향을 미치는 체성감각계에 관한 고찰)

  • Kim Joong-Hwi;Kwon Yong-Hyun;Park Jung-Mi;Kim Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.2
    • /
    • pp.85-99
    • /
    • 2003
  • Muscle tone is the force with which a muscle resists being lengthened. Muscle tone is often tested clinically by passively extending and flexing a relaxed patient's limbs and feeling the resistance offered by the muscle. Both nonneural and neural mechanism contribute to muscle tone. Muscle tone is the mechanisms that contribute to the generation of tone in individual muscles when a person is in a relaxed state. This background level of activity changes in a certain antigravity posture muscle when we stand upright, thus counteracting the force of gravity. This increased level of activity in antigravity muscles is known as postural tone. The evidence from experiments showing that lesions of the dorsal(sensory) roots of the spinal cord reduced muscle(postural) tone is influenced by inputs from the somatosensory system. Patients with neurological damage have several state of muscle(postural) tone, which display from flaccidity to rigidity. This review article deal with muscle tone and somatosensory system acting on this. The understanding about this contribute to a better therapeutic approach for the rehabilitation of patients to have an abnormal muscle(postural) tone due to neurological damage.

  • PDF

The Effect of Asymmetric Lower-Extremity Muscle Force of Elementary Students on Dynamic Balance during Walking (하지 근력의 좌우 비대칭성이 초등학생의 보행 동적안정성에 미치는 영향)

  • Kim, Gun-Soo;Chae, Woen-Sik;Yoon, Chang-Jin;Lee, Haeng-Seob;Kang, Nyeon-Ju;Kim, Dong-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.309-315
    • /
    • 2011
  • The purpose of this study was to evaluate the effect of asymmetric muscle force in lower extremity on dynamic balance during walking. Sixteen elementary students(age: 12.3${\pm}$0.7 yrs, height: 149.4${\pm}$9.7 cm, weight 40.6${\pm}$7.8 kg) who have no musculoskeletal disorder were recruited as the subjects. Temporal parameters, M-L inclination angle of XCoM-CoP, M-L and A-P CoP, loading rate, and decay rate were determined for each trial. For each dependent variable, a independent-sample t-test was performed to test if significant difference existed between each conditions(p<.05). The displacement of antero-posterior COP during RTO-LHC1 in SG was siginificantly smaller than corresponding value in AG. In contrast, the displacement of medio-lateral COP during RTO-LHC1 in SG was greater than those of AG. It seems that imbalance of muscle force may result in increasing the medio-lateral stance in order to minimize the instability. We found that the asymmetric muscle force in the lower extremity may be a reason for the awkward control of impact force.

The Effects of Gooboeum on the Airway Smooth Muscle in the Sensitized Rats (구보음(九寶飮)이 Sensitized Rat의 기관지평골근(氣管支平滑筋)에 미치는 영향(影響))

  • Lee, Seung-Woo
    • The Journal of Internal Korean Medicine
    • /
    • v.14 no.2
    • /
    • pp.1-19
    • /
    • 1993
  • This study was carried out to investigate the effects of Gooboeum extract on the inhibitory contractile action of acetylcholine in the control and sensitized rat. The results were obtained as follows: 1. The acetylcholine contractile force of the trachea smooth muscle with epithelium was significantly relaxed by Gooboeum. 2. Dose-response of acetylcholine from the trachea smooth muscle pretreated Gooboeum was not changed. 3. Effect of Gooboeum on the inhibitory contractile action of trachea smooth muscle pretreated propranolol was not significantly inhibited. 4. The inhibitory contractile action of acetylcholine of trachea smooth muscle pretreated indomethacin was not significantly changed by Gooboeum. 5. Effects of Gooboeum extract on the inhibitory contractile action of acetylcholine of trachea smooth muscle pretreated methylene blue was not significant. 6. The contractile force of acetylcholine of the trachea smooth muscle without epithelium was significantly inhibited by Gooboeum. 7. Dose-response of acetylcholine of the trachea smooth muscle pretreated Gooboeum was not significant. 8. Effects of Gooboeum extract on the inhibitory contractile action of acetylcholine of the trachea smooth muscle pretreated propranolol was significantly inhibited. 9. Effects of Gooboeum extract on the inhibitory contractile action of acetylcholine of the trachea smooth muscle pretreated indomethacin decreased. 10. Effects of Gooboeum extract on the inhibitory contractile action of acetylcholine of the trachea smooth muscle pretreated methylene blue was not significant.

  • PDF

The Effects of Massage and Stretching on Muscle Contraction Force for Muscle Fatigue Caused by Isometric Contraction (등척성수축으로 근피로 유발 후 스트레칭과 마사지가 근수축력 회복에 미치는 영향)

  • Lee, Jong-Dae;Bae, Jun-Ho;Bae, Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.1
    • /
    • pp.53-64
    • /
    • 2006
  • Purpose: The present study purposed to examine the effects of massage and stretching on the recovery of muscle contraction force for muscle fatigue caused by sustained isometric contraction. Methods: The subjects of this study Were 64 healthy men and women (women: 30, men: 34). They Were divided into massage group (23), stretching group (21) and rest group (20), and using Biodex System we observed the pattern of changes in maximal voluntary contraction force (MVC) after causing muscle fatigue in quadriceps femoris muscle through sustained isometric contraction. Results: We measured the point of fatigue occurrence by sustained isometric contraction with 50% MVC and changes in isometric contraction force at 0, 10, 20 and 30 minutes after fatigue and compared them according to gender and treatment group. Conclusion: 1. According to the result of measuring the point of time when fatigue occurred, a difference was observed in time to task failure between men and women. It was significantly longer in women. 2. By gender, MVC changed significantly in all time frames in women, but it showed significant increases only at 10 minutes after fatigue in men. 3. In the comparison of MVC among the treatment groups, it showed significant differences among the groups at 10 minutes after fatigue. 4. In the comparison of changes in MVC among the time frames for each group, the rest group showed significant differences in MVC between 0 and 10 minutes after fatigue and between 20 and 30 minutes after fatigue. The massage group showed significant differences in MVC between 0 and 10 minutes after fatigue and between 10 and 20 minutes after fatigue. The stretching group showed a significant difference in MVC between 10 and 20 minutes after fatigue and between 20 and 30 minutes after fatigue.

  • PDF

Comparison of Lower Extremity Muscle Activity and Knee Joint Load according to Movement Speed Conditions during the Barbell Back Squat (바벨 백 스쿼트 시 운동 속도 조건에 따른 하지근 활성도 및 무릎 관절의 부하량 비교)

  • Moon-Seok Kwon;Jae-Woo Lee
    • Korean Journal of Applied Biomechanics
    • /
    • v.34 no.1
    • /
    • pp.25-33
    • /
    • 2024
  • Objective: The purpose of this study was to compare the lower extremity muscle activity and knee joint load according to movement speed conditions during the barbell back squat. Method: Nine males with resistance training experience participated in this study. Participants performed the barbell back squat in three conditions (Standard, Fast, and Slow) differing movement speed. During the barbell back squat, muscle activity of the rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris long head (BFL), semitendinosus (ST), gluteus maximus (GM), gastrocnemius (GCN), and tibialis anterior (TA) was collected using an 8 channel wireless EMG system. The peak flexion angle of the lower extremity joints and the peak resultant joint force in each direction of the knee joint were calculated using eight motion capture cameras and ground reaction force plates. This study was to used the Friedman test and the Wilcoxon signed rank test, to compare lower extremity muscle activity and peak resultant joint force at knee joint according to movement speed conditions during the barbell back squat, and the statistical significance level was set at .01. Results: In the downward phase of the barbell back squat, the RF and TA showed the higher muscle activity in the fast condition, and in the upward phase, RF, VL, VM, BFL, ST, GM, and TA showed the higher muscle activity in the fast condition. As a results, analyzing of the load on the knee joint, in the downward phase, and in the upward phase, the higher peak compressive force of the knee joint was showed in the fast condition. Conclusion: The barbell back squat with fast movement speed was more effective due to increased muscle activity of lower extremity, but one must be careful of knee joint injuries because the load on the knee joint may increase during the barbell back squat with fast movement speed.

Prediction of Moments and Muscle Forces at the Knee Joint in Deep Flexion (무릎 관절의 고굴곡에 대한 모멘트와 근력의 추정)

  • Cho, Bong-Jo;Moon, Byoung-Young;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1262-1269
    • /
    • 2004
  • This study predicts muscle forces acting on the lower extremity when the knee joint is in deep flexion. The whole body was approximated as a link model, and then the moment equilibrium equations at the lower extremity joints were derived far given reaction farces against the ground. Measurement of deep flexion was carried out by placing ten markers on the body. This study calculated the moment acting at each Joint from the equations of force and moment, classified the complicated muscles around the knee joint, and then predicted the muscle forces to balance the joint moment. Two models were proposed in this study: the simpler one that consists of three groups of muscle and the more detailed one of nine groups of muscle.

Prediction of Muscle Forces for the Knee Joint in Deep Flexion (고굴곡 동작 해석을 위한 무릎 관절 작용 근력의 분류)

  • Cho, Bong-Jo;Son, Kwon;Moon, Byung-Young
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1288-1293
    • /
    • 2003
  • This study predicts muscle forces acting on the lower extremity when the knee joint is in deep flexion. The whole bodies were approximated as a link model, and then the moment equilibrium equations at the lower extremity joints were derived for given reaction forces against the ground. Measurement of deep flexion was carried out by placing ten markers on the body. This study calculated the moment acting at each joint from the equations of force and moment, classified the complicated muscles around the knee joint. and then predicted the muscle forces to balance the joint moment. Two models were proposed in this study: the simpler one that consists of three groups of muscle and the more detailed one of nine groups of muscle.

  • PDF

A Study on Position and Force Control of A Robot Manipulator with Artificial Rubber Muscle (고무인공근 로보트 매니퓨레이터의 위치 및 힘 제어에 관한 연구)

  • Jin, Sang-Ho;Watanabe, Keigo;Lee, Suck-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.97-103
    • /
    • 1995
  • This paper describes position and force hybrid control for a robot manipulator with artificial rubber muscle actuators. The controller using two control laws such as PID control and fuzzy logic control methods is designed. This paper concludes to show the effectiveness of the proposed controller by some experiments for a two-link manipulator.

  • PDF

Differences in Muscle Fiber Characteristics and Meat Quality by Muscle Type and Age of Korean Native Black Goat

  • Hwang, Young-Hwa;Bakhsh, Allah;Lee, Jung-Gyu;Joo, Seon-Tea
    • Food Science of Animal Resources
    • /
    • v.39 no.6
    • /
    • pp.988-999
    • /
    • 2019
  • To investigate the relationship between muscle fiber characteristics and meat quality traits by age of Korean native black goat (KNBG), four muscles (longissimus dorsi, LD; psoas major, PM; semimembranosus, SM; gluteus medius, GM) were obtained from five adult goat (AG; 18 months old) and five young goat (YG; 9 months old). PM muscle had the highest fiber number percentage (FNP) and fiber area percentage (FAP) of type I, followed by SM, GM, and LD muscles. FNP and FAP of type IIB were significantly (p<0.001) higher in AG than those in YG. YG had higher L* values but lower b* values than AG. The highest L* and b* values were observed in LD muscle (p<0.001). Age and muscle type had detrimental (p<0.001) effect on shear force and collagen content for all muscle in AG as compared to YG. YG had significantly (p<0.001) higher myofibrillar fragmentation index (MFI) than AG for all four muscles. These results suggest that muscle fiber compositions of different muscle types of KNBG depend on age, resulting in variations of meat color, MFI, collagen content, and shear force.