• Title/Summary/Keyword: Muscle cell

Search Result 1,099, Processing Time 0.028 seconds

Differentiation of mouse embryonic stem cell into smooth muscle cells by DBcAMP and retinoic acid (DBcAMP와 retinoic acid를 이용한 마우스 배아줄기의 평활근세포 분화)

  • Park, Sung-Soo;Kang, Ju-Won
    • Korean Journal of Veterinary Service
    • /
    • v.31 no.4
    • /
    • pp.449-456
    • /
    • 2008
  • The differentiation of mouse embryonic stem(ES) cell into smooth muscle cells(SMC) may play a major role in cardiovascular development and under pathophysiological conditions. Therefore, in the present study, we have examined the differentiation of ES cells and its related gene expression. SMC differentiation was indicated by cellular morphology and time-dependent induction of dibutyryl adenosine 3,5-cyclic monophosphate(DBcAMP)and retinoic acid(RA) on smooth muscle ${\alpha}$-actin($SM{\alpha}A$), smooth muscle myosin heavy chain(SMMHC) gene expression. The control was undifferentiated ES cells(protein expressions represent 50-60kDaOct-4). The results of this study show that morphology of embryoid body and confirmation of $SM{\alpha}A$ expression by immunocytochemistry. Moreover, SMMHC and desmin expression was significantly increased by time dependent manner(5, 7, 15 days), in contrast to $SM{\alpha}A$ expression was slightly decreased on 15days. In conclusion, DBcAMP and RA stimulate mouse ES cells differentiation into SMC and enhanced $SM{\alpha}A$, SMMHC and desmin expression.

Influence of co-culturing muscle satellite cells with preadipocytes on the differentiation of adipocytes and muscle cells isolated from Korean native cattle

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.715-723
    • /
    • 2018
  • The present study was done to investigate the effect of co-culturing muscle satellite cells (MSCs) and intramuscular preadipocytes (IPs) on the differentiation of adipocytes and muscle cells isolated from Korean native cattle. MSCs and IPs were single-cultured in 10% fetal bovine serum/Dulbecco's modified Eagles medium (FBS/DMEM) for 48 h followed by culturing in 5% FBS/DMEM as the growth media. Then, the growth media was replaced by differentiation media composed of 2% FBS/DMEM without any additives for the single- or co-culture of muscle cells and intramuscular adipocytes to induce the differentiation of both cell types. Cell differentiation was measured by morphological investigation and cytosolic enzyme analysis of glycerol-3-phosphate dehydrogenase (GPDH) for the adipocytes and creatine kinase (CK) for the muscle cells. In the morphological test, the presence of muscle cells did not stimulate adipocyte differentiation showing more differentiation of the adipocytes in the single-culture compared to the co-culture condition. However, the differentiation of muscle cells was promoted by adipocytes in the co-culture. The results of the enzymatic analysis were highly associated with the morphological results with a statistically higher GPDH activity (p < 0.05) appearing in the single-culture than in the co-culture, whereas the opposite was true for the CK activity of the muscle cells (p < 0.05). By manipulating in vivo the milieu using a co-culture, we could detect the difference in the rate of cell differentiation and suggest that a co-culture system is a more reliable and precise technique compared to a single-culture. Further studies on various co-culture trials including supplementation of differentiating substances, gene expression analysis, etc. should be done to obtain practical and fundamental data.

The Effect of Progressive Muscle Relaxation using Biofeedback on Stress Response and Natural Killer Cell in first Clinical Practice of Nursing Students (바이오휘드백을 이용한 점진적 근육이완훈련이 스트레스반응과 면역반응에 미치는 효과)

  • Kim Keum-Soon
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.7 no.1
    • /
    • pp.109-121
    • /
    • 2000
  • Increasingly nursing science is embracing the concepts and methodology derived from psycho-neuroimmunology. It has been previously shown that stress increases and immune function declines in students undergoing examinations. To date, however, no many studies have been reported on stress levels, immune function and interventions in Korean students undergoing their first clinical nursing rotation. It was proposed that nursing students during their first clinical rotation experience increase in stress because of the novelty of the situation and their lack of clinical knowledge. It was also hypothesized that biofeedback and progressive relaxation, methods of self-regulation of involuntary autonomic nervous system responses, would reduce the stress response. The purpose of this study is to test the effectiveness of progressive muscle laxation using biofeedback The effectiveness of the experimental methods was tested by measuring the degree of symptoms of stress (SOS) and the values of ephinephrine, pulse rate, blood pressure and natural killer cells. The subjects of this study were thirty nursing students divided into two groups: experimental group was progressive muscle relaxation group using biofeedback and control group. This study was conducted for 8 weeks of clinical practice. Biofeedback training was done by software developed by J&J company (1-410 form for progressive muscle training). Progressive muscle relaxation training according to Jacobson's Theory was done by messaged word from biofeedback. The data was analyzed using Chronbach' ${\alpha}$ and t-test of the SPSS program and the significance level of statistics was 5%. The results of the study were : 1) The progressive muscle relaxation training using biofeedback was effective for the reduction of symptoms of stress(t=-4.248, p<.001) under clinical practice stress conditions. 2) The progressive muscle relaxation training using biofeedback was not effective for the values of epinephrine(t=-1.294, p=.206). 3) The progressive muscle relaxation training using biofeedback was effective for the reduction of systolic blood pressure (t=-2.757, p=.01). 4) The progressive muscle relaxation training using biofeedback was effective for the reduction of diastolic blood pressure (p=-2.032, 0=.05). 5) The progressive muscle relaxation training using biofeedback was not effective for the reduction of pulse rate(t=-15, p=.988). 6) The progressive muscle relaxation training using biofeedback was effective for the maintenance of natural killer cells (t=2.381, p=02). The first clinical rotation for student nurses is a stressful experience as seen by the rise in the SOS in the control group. Biofeedback using progressive muscle relaxation were effective in preventing the rise of symptoms of stress and the blood pressure means when comparing the pre to post clinical experience, The mean natural killer cell count was depressed in the control group but not significantly different in the experimental groups, It is proposed here that stress via the hypothalamic - pituitary - adrenal axis suppressed the NK cell count whereas the relaxation methods prevented the rise in stress and the resulting immune depression. We recommend relaxation techniques using biofeedback as a health promotion technique to reduce psychological stress. In summary. the progressive muscle relaxation training using biofeedback was effective for the reduction of symptoms of stress under clinical practice stress conditions.

  • PDF

Clear Cell Sarcoma of the Upper Thoracic Back Muscle

  • Kim, Dae-Hyun;Choi, Ki-Hwan;Cho, Young-Dae
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.2
    • /
    • pp.112-114
    • /
    • 2009
  • Clear cell sarcoma (CCS), also called malignant melanoma of soft parts, is a rare malignant soft tissue tumor and is often associated with tendons or aponeuroses. Most of CCS involve extremities, especially lower extremities, but a tumor occurring in the trunk is rare. We report an extremely rare case of CCS originated in the upper thoracic back muscle. To our knowledge, this case is the second report of CCS of the back muscle.

Myogenic Differentiation of p53- and Rb-deficient Immortalized and Transformed Bovine Fibroblasts in Response to MyoD

  • Jin, Xun;Lee, Joong-Seub;Kwak, Sungwook;Jung, Ji-Eun;Kim, Tae-Kyung;Xuo, Chenxiong;Hong, Zhongshan;Li, Zhehu;Kim, Sun-Myoung;Whang, Kwang Youn;Hong, Ki-Chang;You, Seungkwon;Choi, Yun-Jaie;Kim, Hyunggee
    • Molecules and Cells
    • /
    • v.21 no.2
    • /
    • pp.206-212
    • /
    • 2006
  • We have established in culture a spontaneously immortalized bovine embryonic fibroblast (BEF) cell line that has lost p53 and $p16^{INK4a}$ functions. MyoD is a muscle-specific regulator capable of inducing myogenesis in a number of cell types. When the BEF cells were transduced with MyoD they differentiated efficiently to desmin-positive myofibers in the presence of 2% horse serum and 1.7 nM insulin. The myogenic differentiation of this cell line was more rapid and obvious than that of C2C12 cells, as judged by morphological changes and expression of various muscle regulatory factors. To confirm that lack of the p53 and $p16^{INK4a}$ pathway does not prevent MyoD-mediated myogenesis, we established a cell line transformed with SV40LT (BEFV) and introduced MyoD into it. In the presence of 2% horse serum and 1.7 nM insulin, the MyoD-transduced BEFV cells differentiated like the MyoD-transduced BEFS cells, and displayed a similar pattern of expression of muscle regulatory proteins. Taken together, our results indicate that MyoD overexpression overcomes the defect in muscle differentiation associated with immortalization and cell transformation caused by the loss of p53 and Rb functions.

Mechanical Analysis of heart muscle using a computational model of cardiac myocyte (심근세포 모델을 이용한 심장근육의 역학적 분석)

  • 심은보;김헌영;임채헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1176-1179
    • /
    • 2004
  • A new cell-cross bridge mechanics model is proposed to analyze the mechanics of heart muscle. Electrophysiology of a cardiac cell is numerically approximated using the previous model of human ventricular myocyte. Ion transports across cell membrane initiated by action potential induce excitation-contraction mechanism in the cell via cross bridge dynamics. Negroni and Lascano model (NL model) is employed to compute the tension of cross bridge closely related to ion dynamics in cytoplasm.

  • PDF

Losartan Inhibits Vascular Smooth Muscle Cell Proliferation through Activation of AMP-Activated Protein Kinase

  • Kim, Jung-Eun;Choi, Hyoung-Chul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.299-304
    • /
    • 2010
  • Losartan is a selective angiotensin II (Ang II) type 1 ($AT_1$) receptor antagonist which inhibits vascular smooth muscle cells (VSMCs) contraction and proliferation. We hypothesized that losartan may prevent cell proliferation by activating AMP-activated protein kinase (AMPK) in VSMCs. VSMCs were treated with various concentrations of losartan. AMPK activation was measured by Western blot analysis and cell proliferation was measured by MTT assay and flowcytometry. Losartan dose- and time-dependently increased the phosphorylation of AMPK and its downstream target, acetyl-CoA carboxylase (ACC) in VSMCs. Losartan also significantly decreased the Ang II- or 15% FBS-induced VSMC proliferation by inhibiting the expression of cell cycle associated proteins, such as p-Rb, cyclin D, and cyclin E. Compound C, a specific inhibitor of AMPK, or AMPK siRNA blocked the losartan-induced inhibition of cell proliferation and the $G_0/G_1$ cell cycle arrest. These data suggest that losartan-induced AMPK activation might attenuate Ang II-induced VSMC proliferation through the inhibition of cell cycle progression.

Visualization of the physical characteristics of collective myoblast migration upon skeletal muscle injury and regeneration environment (골격근 손상 및 재생 환경에서의 근육 세포 군집 이동의 물리적 특성 가시화)

  • Kwon, Tae Yoon;Jeong, Hyuntae;Cho, Youngbin;Shin, Jennifer H.
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.70-77
    • /
    • 2022
  • Skeletal muscle tissues feature cellular heterogeneity, including differentiated myofibers, myoblasts, and satellite cells. Thanks to the presence of undifferentiated myoblasts and satellite cells, skeletal muscle tissues can self-regenerate after injury. In skeletal muscle regeneration, the collective motions among these cell types must play a significant role, but little is known about the dynamic collective behavior during the regeneration. In this study, we constructed in vitro platform to visualize the migration behavior of skeletal muscle cells in specific conditions that mimic the biochemical environment of injured skeletal muscles. We then visualized the spatiotemporal distribution of stresses arising from the differential collectiveness in the cellular clusters under different conditions. From these analyses, we identified that the heterogeneous population of muscle cells exhibited distinct collective migration patterns in the injury-mimicking condition, suggesting selective activation of a specific cell type by the biochemical cues from the injured skeletal muscles.

Protective Effect of water extract Phellinus linteus-discard Schisandra chinensis solid fermented extracts on improvement of sarcopenia by Atorvastatin-induced muscle atrophy cell model (Atorvastatin으로 유도된 근위축 세포모델에서 상황-오미자박 고상발효물 열수추출물의 보호효과)

  • Kim, Young-Suk;Hwang, Su-Jin;Park, Kwang-Il;Lim, Jong-Min;Cheon, Da-Mi;Jung, Yu Jin;Jeon, Byeong Yeob;Kwak, Kyeung Tae;Oh, Tae Woo
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.239-252
    • /
    • 2021
  • Objectives : This study is to effect of improving muscle atrophy through water extract on the solid-phase fermentation extraction with Phellinus linteus of discarded Schisandra chinensis in an atorvastatin-induced atrophy C2C12 cell. Methods : C2C12 myoblast were differentiated into myotube by 2% horse serum medium for 6 days, and then treated solid-phase fermentation(S-P) extract at different concentrations for 24h. To investigate the effect of S-P extract on the induction of muscle atrophy and expression of atrophy-related genes and apoptosis in differentiated C2C12 myotubes using a GSH, ROS, real-time PCR, western blots analysis. Results : As a result of treatment with atorvastatin at concentrations of 5, 10, and 20 uM on the 6th day of differentiation in C2C12 myotube cells, it was confirmed that the cell morphology was damaged in a concentration-dependent manner, and the length and thickness of the myotube also decreased in a concentration-dependent manner. Treatment with S-P extract (50, 100 and 200 ㎍/㎖) increased of GSH and inhibited ROS in the atorvastatin-induced muscle atrophy cell model at a concentration that did not induce toxicity. In addition, it was confirmed that it has an effect on muscle reduction by inhibiting apoptosis of muscle cells as well as being involved in protein production and degradation of muscle cells. Conclusions : Atorvastatin-induced atrophy C2C12 cell, S-P extract activates related to differentiation/generation and proteolysis, and inhibits cell death of atrophy in C2C12 cell. Based on this, it is necessary to prove its effectiveness through animal models and human application test, but it is considered to be discarded Schisandra chinensis can present the potential for development as a recycling industrial material.

Effects of a traditional Chinese medicine formula and its extraction on muscle fiber characteristics in finishing pigs, porcine cell proliferation and isoforms of myosin heavy chain gene expression in myocytes

  • Yu, Qin Ping;Feng, Ding Yuan;He, Xiao Jun;Wu, Fan;Xia, Min Hao;Dong, Tao;Liu, Yi Hua;Tan, Hui Ze;Zou, Shi Geng;Zheng, Tao;Ou, Xian Hua;Zuo, Jian Jun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1620-1632
    • /
    • 2017
  • Objective: This study evaluated the effects of a traditional Chinese medicine formula (TCMF) on muscle fiber characteristics in finishing pigs and the effects of the formula's extract (distilled water, ethyl acetate and petroleum ether extraction) on porcine cell proliferation and isoforms of myosin heavy chain (MyHC) gene expression in myocytes. Methods: In a completely randomized design, ninety pigs were assigned to three diets with five replications per treatment and six pigs per pen. The diets included the basal diet (control group), TCMF1 (basal diet+2.5 g/kg TCMF) and TCMF2 (basal diet+5 g/kg TCMF). The psoas major muscle was obtained from pigs at the end of the experiment. Muscle fiber characteristics in the psoas major muscle were analyzed using myosin ATPase staining. Cell proliferation was measured using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) dye and cytometry. Isoforms of MyHC gene expression were detected by real-time quantitative polymerase chain reaction. Results: The final body weight and carcass weight of finishing pigs were increased by TCMF1 (p<0.05), while the psoas major muscle cross-sectional area was increased by TCMF (p<0.05). The cross-sectional area and diameter of psoas major muscle fiber Ι, IIA, and IIB were increased by TCMF2 (p<0.05). The cross-sectional area and fiber diameter of psoas major muscle fiber IIA and IIB were increased by diet supplementation with TCMF1 (p<0.05). Psoas major muscle fiber IIA and IIB fiber density from the pigs fed the TCMF1 diet and the type IIB fiber density from the pigs fed the TCMF2 diet were lower compared to pigs fed the control diet (p<0.05). Pigs fed TCMF2 had a higher composition of type Ι fiber and a lower percentage of type IIB fiber in the psoas major muscle (p<0.05). The expression levels of MyHC Ι, MyHC IIa, and MyHC IIx mRNA increased and the amount of MyHC IIb mRNA decreased in the psoas major muscle from TCMF2, whereas MyHC Ι and MyHC IIx mRNA increased in the psoas major muscle from TCMF1 (p<0.05). Peroxisome proliferator-activated receptor ${\gamma}$ $coactivator-1{\alpha}$ and CaN mRNA expression in the psoas major muscle were up-regulated by TCMF (p<0.05). Porcine skeletal muscle satellite cell proliferation was promoted by $4{\mu}g/mL$ and $20{\mu}g/mL$ TCMF water extraction (p<0.05). Both $1{\mu}g/mL$ and $5{\mu}g/mL$ of TCMF water extraction increased MyHC IIa, MyHC IIb, and MyHC IIx mRNA expression in porcine myocytes (p<0.05), while MyHC Ι mRNA expression in porcine myocytes was decreased by $5{\mu}g/mL$ TCMF water extraction (p<0.05). Porcine myocyte MyHC Ι and MyHC IIx mRNA expression were increased, and MyHC IIa and MyHC IIb mRNA expression were down-regulated by $5{\mu}g/mL$ TCMF ethyl acetate extraction (p<0.05). MyHC Ι and MyHC IIa mRNA expression in porcine myocytes were increased, and the MyHC IIb mRNA expression was decreased by $1{\mu}g/mL$ TCMF ethyl acetate extraction (p<0.05). Four isoforms of MyHC mRNA expression in porcine myocytes were reduced by $5{\mu}g/mL$ TCMF petroleum ether extraction (p<0.05). MyHC IIa mRNA expression in porcine myocytes increased and MyHC IIb mRNA expression decreased by $1{\mu}g/mL$ in a TCMF petroleum ether extraction (p<0.05). Conclusion: These results indicated that TCMF amplified the psoas major muscle cross-sectional area through changing muscle fiber characteristics in finishing pigs. This effect was confirmed as TCMF extraction promoted porcine cell proliferation and affected isoforms of MyHC gene expression in myocytes.