• Title/Summary/Keyword: Muscle activity sensor

Search Result 35, Processing Time 0.028 seconds

Effects of the Symmetry of Muscle Activity by Application of Visual Feedback using Tension Sensor and Inclinometer during Bridge Exercise with Sling (슬링을 이용한 교각운동 시 장력센서와 경사계를 이용한 시각적 피드백이 근활성도에 미치는 영향)

  • Kwon, Yu-Jeong;Song, Min-Young
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.9 no.1
    • /
    • pp.133-140
    • /
    • 2021
  • Purpose: This study aimed to compare the relative muscle activity on the erector spinae, gluteus maximus, and hamstring, using a non-visual feedback bridge exercise and a visual feedback bridge exercise with a tension sensor and clinometer. Methods: Twenty-two healthy subjects participated in this study. The study subjects performed bridge exercises without visual feedback, bridge exercises using a tension sensor, and bridge exercises using an inclinometer in the supine position, and the muscle activity of the left and right erector spinae, gluteus maximus, and hamstring muscles was measured while maintaining isometric contraction during the bridge movement. Muscle activity was measured by using surface an electromyography equipment. To standardize the measured action potential of each muscle, the maximum voluntary isometric contraction was measured. The bridge exercise was repeated 3 times for 5s each. Using repeated analysis of variance, we compared the significant difference in EMG activity for each muscle between the three experiments, and all statistical processing was performed using SPSS version 26. The statistical significance level was set at α = 0.05. Results: During bridging exercises, the asymmetry of the muscle activity of the erector spinae and gluteus maximus during visual feedback guiding was lower than that during no visual feedback. However, there was no significant difference. Moreover, the asymmetry of the muscle activity of the hamstring muscles was significantly lower during tension sensor visual feedback than that during no visual feedback (p<0.05). Conclusion: These findings suggest that bridge exercise with visual feedback using a tension sensor and an inclinometer is effective in inducing symmetrical movement. When it is necessary to symmetrically adjust the weight load of both feet during the bridge exercise, it is effective to apply visual feedback using a tension sensor.

Effect of IMU Sensor Based Trunk Stabilization Training on Muscle Activity and Thickness with Non-specific Chronic Low Back Pain (만성 허리통증 환자의 관성 센서 기반 허리 안정화 훈련이 몸통 근육 활성도와 두께에 미치는 영향)

  • Kim, Sang Hee;Lee, Hyun Ju;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.177-184
    • /
    • 2022
  • The purpose of this study was to present the IMU sensor based trunk stabilization exercise and to evaluate the changes in the muscle activity and thickness with non-specific low back pain patients (N=30). They were classified into two groups; lumbar stabilization exercise using IMU sensor (ILS), (n1=20) and general lumbar stabilization exercise (GLS), (n2=10). By comparing the difference between pre and post intervention via trunk muscle activity and muscle thickness, the significant differences were identified. Muscle activity was measured on external oblique (EO), internal oblique (IO), and multifidus (MF) by using surface electromyography (sEMG). Muslce thickness was measured on external oblique, internal oblique, transverse abdominis (TrA), and multifidus (MF) by using ultrasonography. sEMG activity was recorded at right side-bridge position. Each group performed the proposed lumbar stabilization exercise for 30 minutes a day, 5 times a week for 4 weeks. Trunk muscle activity was observed with a significant increase in the IO of ILS (p<.05) and a decrease in the MF of GLS (p<.05). Trunk muscle thickness was significantly increased in left EO and both IO of GLS (p<.05), and also significant increased right EO, both IO, both TrA, and both MF of the ILS (p<.05). In the future, a convergence approach of rehabilitation and engineering is needed to select a sensor suitable for rehabilitation purposes, study the validity and reliability of data, and produce appropriate rehabilitation contents.

Active training machine with muscle activity sensor for elderly people

  • Matsuda, Goichi;Tanaka, Motohiro;Yoon, Sung-Jae;Ishimatsu, Takakazu;Kim, Seok-Hwan;Moromugi, Shunji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1169-1172
    • /
    • 2005
  • For elderly people, an advanced training machine that uses actuator and can adjust load according to muscle activity is proposed. The proposed machine allows users to have a safe and effective training through exercise close to ordinal motion appears in daily life such as stretching or stooping motion. A muscle activity sensor real-timely monitors the activation level of user's muscle during the exercise and the training load is adjusted based on the measured data. The training load is exerted and continuously controlled by electric/pneumatic actuator.

  • PDF

Effects of Tai Chi on Balance and Muscle Activity of Ankle Joints with USN sensor in Elderly People (태극권이 노인의 균형과 센서 USN을 이용한 발목관절 근활성도에 미치는 영향)

  • Kang, Jeong-Il;Kwon, Hye-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.3
    • /
    • pp.425-431
    • /
    • 2015
  • The objective of this study was to effect of Tai Chi on balance and muscle activity of ankle joints with USN sensor in elderly people. Thirty six elderly participated and randomly assigned to a experimental group with Tai Chi and control group. The experimental group trained using a Tai Chi through 3 times per a week over 6 weeks. For all subjects, their balance such as functional reach test and one leg stance test, the change of muscle activity of ankle joints with USN sensor wireless-electromyogram during leg closed stance with eye closed were measured, and the results were as followed. The results were of a signigicant changes to the balance in group and between group as well. Comparison of muscle activity left tibialis anterior and left gastrocnemius in group, there were significant difference. Comparison of muscle activity right tibialis anterior and right gastrocnemius in group, there were significant difference. Comparison of muscle activity between groups, there was significant difference. Additional results indicated that, elderly people who received Tai Chi in one study, improve balance control and muscle activity ankle joint. so it is anticipated that improvement in clinical utilization for the elderly who's gait ability and balance ability reduced.

The effect of wearable sensor wear on muscular activity of the head posture during smartphone use (웨어러블 센서 착용이 스마트폰 사용 시 발생하는 전방머리자세의 근활성에 미치는 영향)

  • Park, Sung-Hyun;Kang, Jong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.47-51
    • /
    • 2017
  • The purpose of this study was to investigate the effect of wearable sensor wear on the muscle contraction of cervical erector spinae and upper trapezius causing the forward head posture induction in order to reduce the stress induced by the use of smartphone. This study was to investigate the muscle activity of healthy adults in the 20th to 30th generations by dividing them into the control group using the smartphone, the non-wearing group conscious the posture of the head posture, and the wearing group wearing the wearable sensor. There were no differences in muscle activity between cervical erector spinae and upper trapezius compared to the control, non - wearing, and wearing groups. In addition, the changes in muscle activity of cervical erector spinae muscles were increased in all groups, but the muscle activity of upper trapezius muscles were in the wear group compared to the non-wear group and the control group, but there was no statistical significance. That is, wear of the wearable sensor may be effective in controlling the conscious posture, but it may cause the compensation of another part.

Comparison of Muscle Activity of Vastus Lateralis and Medialis Oblique among Knee Extension Angles at 90°, 135°, 180° in Sitting Position

  • Jeon, InCheol
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.1
    • /
    • pp.52-57
    • /
    • 2020
  • Purpose: This study compared the muscle activities of the Vastus medialis oblique (VMO) and the Vastus lateralis (VL) at three different knee extension angles: 90°, 135°, and 180° in the sitting position. Methods: Twenty subjects between 20 and 30 years of age participated in the study. A mobile phone application called the Clinometer was used to measure the knee joint angle. Electromyography (EMG) was performed to measure the muscle activities of the VMO and VL muscles during knee isometric extension exercises. The pulling sensor was used to maintain 70% of the maximum strength of the knee extensor continuously in the sitting position. After attaching the EMG sensor, the subjects were asked to perform isometric knee extension exercises randomly among three knee extension angles (90°, 135°, or 180°) in the sitting position. One-way repeated measures analysis of the variance and a Bonferroni post hoc test was used to identify the VMO and VL muscle activity during knee extension angles among 90°, 135°, and 180°. Results: The VMO and VL muscle activities increased with increasing knee extension angle in the sitting position (p<0.01). Conclusions: Knee extension exercise at a 180° angle in the sitting position can be recommended to increase the muscle activity of the VMO and VL muscle activities efficiently.

A Study on Estimation of Scoliosis using Electromyography Sensor (근전도 센서를 이용한 척추측만증 추정에 관한 연구)

  • Choi, Dae-Yeong;Nam, Hyun-Do;Kim, Kyung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1231-1235
    • /
    • 2016
  • In this study, it measures electromyogram to estimate scoliosis by using sensors in both sides of spinal erector muscle. A device is measured raw data to input mcu through a filter and amplifier. MCU is named "arduino" that is calculated muscle activity with algorithm by inputting data. By comparing with both sides of spinal erector muscle's activity, it studies about estimation of scoliosis

Effects of Passive Scapular Postural Correction and Active Scapular Posterior Tilt Strategies on Peri-scapular Muscle Activation (수동적 어깨뼈 자세 교정 전략과 능동적 어깨뼈 뒤쪽 기울임 전략이 어깨뼈 주변근육 활성도에 미치는 영향)

  • Kang, Min-Hyeok
    • PNF and Movement
    • /
    • v.20 no.2
    • /
    • pp.215-222
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the effects of passive scapular upward rotation and posterior tilt and active scapular posterior tilt on the muscle activity of the upper trapezius (UT), lower trapezius (LT), and serratus anterior (SA). Methods: Fifteen healthy subjects performed general arm elevation, arm elevation with passive scapular upward rotation and posterior tilt, and arm elevation with active scapular posterior tilt. For active scapular posterior tilt, the subjects were trained in this movement using visual biofeedback and a motion sensor. During each arm elevation condition, electromyography was used to measure the muscle activity of the UT, LT, and SA. The measured data were analyzed using a one-way repeated ANOVA. Results: LT muscle activity was significantly increased during arm elevation with active scapular posterior tilt compared to both general arm elevation and arm elevation with passive scapular upward rotation and posterior tilt (p < 0.05). SA muscle activity was greater during arm elevation with passive scapular upward rotation and posterior tilt than during general arm elevation (p < 0.05). There was no significant change in UT muscle activity among the tested arm elevation conditions (p > 0.05). Conclusion: Performing arm elevation with active scapular posterior tilt and performing arm elevation with passive scapular upward rotation and posterior tilt may be useful strategies for increasing muscle activation of the LT and SA, respectively.

Arm Lifting Exercises for Lower Trapezius Muscle Activation

  • Kang, Minhyeok
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.10 no.4
    • /
    • pp.1868-1872
    • /
    • 2019
  • Background: Lower trapezius muscle function is important for the prevention and treatment of shoulder injuries. However, scapular posterior tilt movement has been overlooked in lower trapezius strengthening exercise programs. Objective: To examine the effects of prone arm lifting with scapular posterior tilt (PALSPT) on trapezius muscles. Design: Crossover study Methods: 17 healthy males were recruited for participation in this study. Participants performed backward rocking diagonal arm lifting (BRDAL) and PALSPT. To train participants in scapular posterior tilt movements for PALSPT, visual biofeedback of scapular movements was provided using a motion sensor. Electromyography (EMG) activities of the middle and lower trapezius were recorded using a surface EMG system. Differences in middle and lower trapezius muscle activity between BRDAL and PALSPT exercises were analyzed. Results: Lower trapezius muscle activity was significantly greater during PALSPT than during BRDAL (p=.006). Although greater EMG activity was observed in the middle trapezius during PALSPT than during BRDAL, this difference was not significant (p=.055). Conclusions: The results of the present study indicate that scapular posterior tilt movements must be considered in lower trapezius muscle strengthening programs.

Device for Assisting Grasping Function

  • Jeong, Gu-Young;Yu, Kee-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.77.5-77
    • /
    • 2002
  • A mechanical device was developed for assisting the grasping function of a person whose fingers suffered cervical injury and thus are unable to grasp. This device is composed of a mechanical glove put on the user's hand and a muscle sensor to measure the activity of his or her muscle. The mechanical glove consists of a finger frame, a base and an air cylinder mounted on the base. With the kinematics carefully designed, the finger frame can achieve the grasping motion under the actuation of the air cylinder. For controlling this motion, an innovative sensor was developed to detect the user's motion intention. The sensor measures the change of the muscle stiffness...

  • PDF