• Title/Summary/Keyword: Muscle Power Assisting

Search Result 5, Processing Time 0.019 seconds

Intent signal generation of the exoskeletal robotics for construction workers and verification of its feasibility (건설작업자의 근력지원을 위한 외골격 모듈의 동작의지신호 생성 및 타당성 검증)

  • Lee, Seung-Hoon;Yu, Seung-Nam;Lee, Hee-Don;Jang, Jae-Ho;Han, Chang-Soo;Han, Jung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1603-1608
    • /
    • 2008
  • Powered robotic exoskeletons are currently under development for assisting or supporting human muscle power. Many applications using this system for the purpose of national defense system, medical support, and construction industry are now frequently introduced. In this paper, we proposed the exoskeletal wearable robotics for construction workers. First, we analyzed general work conditions at the construction site and set up target tasks through the datum. Then dominant muscles’ activity which is related with the defined target tasks was checked up. Herein, wearers’ intent signal generation methodology was introduced in order to effectively activate the proposed system. In the final part of this paper, we evaluated the capability and feasibility of the exoskeletal robotics by the electromyography (EMG) signal variance; demonstrated that robotic exoskeletons controlled by muscle activity could be useful way of assisting with construction workers.

  • PDF

Hydraulic Exoskeletal Robot for Assisting Muscle Power (유압식 근력지원 외골격 로봇 개발)

  • Jang, Jae-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.485-487
    • /
    • 2011
  • 본 논문에서는 인간의 근력을 보조 또는 증폭시켜 줄 수 있는 유압 구동식 외골격 로봇을 개발하였다. 인간 신체 데이터와 보행 분석 데이터를 기반으로 로봇의 외골격을 설계 하였으며, 이를 구동하기 위한 알고리즘, 제어기 H/W 등을 개발하였다. 근력지원 외골격 로봇을 설계 제작하여, 실제 실험을 통해 설계, 제어 등 로봇의 현장 적용 가능성 등을 판단할 수 있는 플랫폼을 가질 수 있었다.

  • PDF

Knee-wearable Robot System Using EMG signals (근전도 신호를 이용한 무릎 착용 로봇시스템)

  • Cha, Kyung-Ho;Kang, Soo-Jung;Choi, Young-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.286-292
    • /
    • 2009
  • This paper proposes a knee-wearable robot system for assisting the muscle power of human knee by processing EMG (Electromyogram) signals. Although there are many muscles affecting the knee joint motion, the rectus femoris and biceps femoris among them play a core role in the extension and flexion motion, respectively, of the knee joint. The proposed knee-wearable robot system consists of three parts; the sensor for measuring and processing EMG signals, controller for estimating and applying the required knee torque, and actuator for driving the knee-wearable mechanism. Ultimately, we suggest the motion control method for knee-wearable robot system by processing the EMG signals of corresponding two muscles in this paper. Also, we show the effectiveness of the proposed knee-wearable robot system through the experimental results.