• 제목/요약/키워드: Muscle Model

검색결과 757건 처리시간 0.03초

심근세포 모델을 이용한 심장근육의 역학적 분석 (Mechanical Analysis of heart muscle using a computational model of cardiac myocyte)

  • 심은보;김헌영;임채헌
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1176-1179
    • /
    • 2004
  • A new cell-cross bridge mechanics model is proposed to analyze the mechanics of heart muscle. Electrophysiology of a cardiac cell is numerically approximated using the previous model of human ventricular myocyte. Ion transports across cell membrane initiated by action potential induce excitation-contraction mechanism in the cell via cross bridge dynamics. Negroni and Lascano model (NL model) is employed to compute the tension of cross bridge closely related to ion dynamics in cytoplasm.

  • PDF

근육 모델 기반 3D 얼굴 표정 생성 시스템 설계 및 구현 (A Design and Implementation of 3D Facial Expressions Production System based on Muscle Model)

  • 이혜정;정석태
    • 한국정보통신학회논문지
    • /
    • 제16권5호
    • /
    • pp.932-938
    • /
    • 2012
  • 얼굴 표정은 상호간 의사소통에 있어 중요한 의미를 갖는 것으로, 인간이 사용하는 다양한 언어보다도 수많은 인간 내면의 감정을 표현할 수 있는 유일한 수단이다. 본 논문에서는 쉽고 자연스러운 얼굴 표정 생성을 위한 근육 모델 기반 3D 얼굴 표정 생성 시스템을 제안한다. 3D 얼굴 모델의 표정 생성을 위하여 Waters의 근육 모델을 기반으로 자연스러운 얼굴 표정 생성에 필요한 근육을 추가하여 사용하고, 표정 생성의 핵심적 요소인 눈썹, 눈, 코, 입, 볼 등의 특징요소들을 중심으로 얼굴 근육과 근육벡터를 이용하여 해부학적으로 서로 연결된 얼굴 근육 움직임의 그룹화를 통해 얼굴 표정 변화의 기본 단위인 AU를 단순화하고 재구성함으로써 쉽고 자연스러운 얼굴 표정을 생성할 수 있도록 하였다.

근위축 마우스 모델에서 한국산 겨우살이 추출물에 의한 단백질 합성 신호전달 경로의 활성화 (Activation of Signaling Pathways for Protein Synthesis by Korean Mistletoe (Viscum album coloratum) Extract in a Mouse Model of Muscle Atrophy)

  • 정주성;박춘호;김인보;김종배
    • 한국식품영양학회지
    • /
    • 제30권2호
    • /
    • pp.371-377
    • /
    • 2017
  • Muscle atrophy is characterized by a decrease in the mass of the muscle. With an increase in life expectancy and chronic illnesses, the incidence of muscle atrophy is increasing and the quality of life of patients is decreasing. Thus, reducing muscle atrophy is of high clinical and socio-economic importance. Mistletoe is a semi-parasitic plant that has been used as a traditional medicine in many countries to treat various human illnesses. It has been reported that Korean mistletoe extract (KME) has diverse biological functions including anti-tumor, anti-oxidant, anti-diabetic, anti-obesity properties, and extension of lifespan. Especially, we have recently reported that KME improves exercise endurance in mice, indicating its beneficial roles in enhancing the capacity of skeletal muscle. In this study, we investigated whether KME could activate the signaling pathway related to protein synthesis in a mouse model of muscle atrophy. Interestingly, KME efficiently activated the Akt/mTOR pathway, and Akt and mTOR are important signaling hub molecules for the acceleration of protein synthesis in muscle cells. In addition, KME also increased the activity of S6 kinase which is involved in the regulation of muscle cell size. Moreover, the ERK activity, required for transcription of ribosomal RNA for protein synthesis, was also enhanced in KME-treated mouse muscle. These data support the idea that KME increases muscle mass via increased protein synthesis. Our findings also suggest that Korean mistletoe might be a promising candidate for the development of functional foods that are beneficial for preventing muscle atrophy.

Muscle Radiation Attenuation in the Erector Spinae and Multifidus Muscles as a Determinant of Survival in Patients with Gastric Cancer

  • An, Soomin;Kim, Youn-Jung;Han, Ga Young;Eo, Wankyu
    • Journal of Korean Biological Nursing Science
    • /
    • 제24권1호
    • /
    • pp.17-25
    • /
    • 2022
  • Purpose: To determine the prognostic role of muscle area and muscle radiation attenuation in the erector spinae (ES) and multifidus (MF) muscles in patients undergoing gastrectomy. Methods: Patients with stage I-III gastric cancer undergoing gastrectomy were retrospectively enrolled in this study. Clinicopathologic characteristics were collected and analyzed. Both paraspinal muscle index of ES/MF muscles (PMIEM) and paraspinal muscle radiation attenuation in the same muscles (PMRAEM) were analyzed at the 3rd lumbar level using axial computed tomographic images. Cox regression analysis was applied to estimate overall survival (OS) and disease-free survival (DFS). Results: There was only a weak correlation between PMIEM and PMRAEM (r= 0.28). Multivariate Cox regression revealed that PMRAEM, but not PMIEM, was an important determinant of survival. PMRAEM along with age, tumor-node-metastasis (TNM) stage, perineural invasion, and serum albumin level were significant determinants of both OS and DFS that constituted Model 1. Harrell's concordance index and integrated area under receiver operating characteristic curve were greater for Model 1 than for Model 2 (consisting of the same covariates as Model 1 except PMRAEM) or Model 3 (consisting of only TNM stage). Conclusion: PMRAEM, but not PMIEM, was an important determinant of survival. Because there was only a weak correlation between PMIEM and PMRAEM in this study, it was presumed that they were mutually exclusive. Model 1 consisting of age, TNM stage, perineural invasion, serum albumin level, and PMRAEM was greater than nested models (i.e., Model 2 or Model 3) in predicting survival outcomes.

Dexamethasone으로 유도한 근감소 동물모델에서 상황버섯-오미자박 고상발효 열수추출물의 근감소 개선에 대한 효과 (Effect of water extract Phellinus linteus-discard Schisandra chinensis solid fermented extracts in an Animal Model of Dexamethasone-Induced Muscle Loss)

  • 황수진;김영숙;오태우
    • 대한한의학방제학회지
    • /
    • 제30권4호
    • /
    • pp.269-280
    • /
    • 2022
  • Objectives : In this study, it was investigated the effects of solid-phase fermentation extraction with Phellinus linteus of discarded Schisandra chinensis extract (PS) and its action mechanism on dexamethasone-induced muscle atrophy in mice. Methods : In mice, muscle atrophy model was induced by dexamethasone (5 mg/kg, I.p) once daily for 2 weeks and with PS extract administration (100 and 300 mg/kg, p.o.) as treatment groups. The changes in body weights, grip strength, Treadmill test, muscle weights, and the expression of atrophy-related genes were measured in muscle atrophy mice. The histological changes of gastrocnemius tissues were also observed by H&E staining with measurement of myofiber size. Results : The administration of PS extract increased significantly body weights, grip strength, treadmill test and muscle weights in muscle atrophy mice. PS extract administration increased significantly the area of myofibers and inhibited structural damages of muscle and increased significantly the expression of myogenin and decreased significantly the expression of MuRF1, Atrogin1 and phosphorylation of AMPK and PGC1α in muscle tissues of muscle atrophy mice. Conclusions : These results indicate that PS extract has a improvement effects on muscle atrophy with stimulation of myogenic differentiation and inhibition of mRNA degradation that could be related with the activation of AMPK and PGC1α signaling pathways in muscle. This suggests that PS extract can apply to treat muscle atrophy in clinics.

건강한 성인의 슬개건 반사 시 무릎 감쇠효과를 고려한 대퇴사두근의 근력 및 근활성도 예측 (Identification of Muscle Forces and Activation of Quadriceps Femoris Muscles of Healthy Adults Considering Knee Damping Effects during Patellar Tendon Reflex)

  • 강문정;조영남;유홍희
    • 대한기계학회논문집B
    • /
    • 제38권1호
    • /
    • pp.57-62
    • /
    • 2014
  • 인체 해석모델은 주로 인간이 의식적으로 행하는 운동을 중심으로 발전해 왔다. 의식적 운동과 달리 슬개건 반사는 뇌를 거치지 않고 일어난다. 본 연구는 건강한 성인의 슬개건 반사로 인한 대퇴부의 근력과 근활성도를 해석적으로 예측하고자 하였다. 해석 모델은 시상면에서 평면운동을 하고, 앉은 자세에서 상체와 허벅지를 고정시켜 종아리만 진자 운동이 가능하도록 모델링 하였다. 무릎은 레볼루트 조인트로 모델링 하였고, 발목관절은 고정시켜 종아리와 발을 하나의 강체로 가정하였다. 근력은 Mamizuka 의 실험 결과로부터 얻은 운동학 정보를 이용하여 역동역학 해석을 통해 구하였으며, 근활성도는 Hill-type 근육 모델을 이용하여 예측하였다. 해석 결과는 실험결과를 통해 검증되었다.

AR 매개 변수를 이용한 근육 피로의 측정 (Measurement of Muscle Fatigue using AR Parameters)

  • 김홍래;왕문성;최윤호;박상희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 하계종합학술대회 논문집
    • /
    • pp.158-161
    • /
    • 1989
  • This paper describes the AR model of EMG signal during maximum voluntary contraction. By comparing the AR coefficients and the reflection coefficients of the AR model with the median frequency of power spectrum, it if proved that muscle fatigue can be measured by the AR and the reflection coefficients. In the estimation procedure of AR model parameter, the auto-correlation method is superior to the covariance method, and it is determined that the optimal order is six. As the muscle becomes fatigue, the median frequency of power spectrum is declined, and the AR coefficient [$a_1$ ] and the reflection coefficient [$k_1$ ] are also decreased. Therefore the muscle fatigue can be measured by the AR parameter.

  • PDF

교근에서의 정상 및 비정상 근전도 휴지기 발생 모델링 (A Modelling of Normal and Abnormal EMG Silent Period Generation of Masseter Muscle)

  • 김태훈;전창익;이상훈
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권2호
    • /
    • pp.112-119
    • /
    • 2003
  • This paper proposes a model of SP(silent period) generation in masseter muscle by means of computer simulation. The model is based on the anatomical and physiological properties of trigeminal nervous system. In determining the SP generation pathway, evoked SPs of masseter muscle after mechanical stimulation to the chin are divided into normal and abnormal group. Normal SP is produced by the activation of mechanoreceptors in periodontal ligament. The activation of nociceptors contributes to the latter part of normal SP, abnormal extended SP is produced. As a result, the EMG signal generated by a proposed SP generation model is similar to both real EMG signal including normal SP and abnormal extended SP with TMJ patients. The result of this study have shown differences of SP generation mechanism between subjects both with and without TMJ dysfunction.

Aerobic Exercise Ameliorates Muscle Atrophy Induced by Methylglyoxal via Increasing Gastrocnemius and Extensor Digitorum Longus Muscle Sensitivity

  • Seong-Min Hong;Eun Yoo Lee;Jinho Park;Jiyoun Kim;Sun Yeou Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권5호
    • /
    • pp.573-582
    • /
    • 2023
  • Muscle atrophy is characterized by the loss of muscle function. Many efforts are being made to prevent muscle atrophy, and exercise is an important alternative. Methylglyoxal is a well-known causative agent of metabolic diseases and diabetic complications. This study aimed to evaluate whether methylglyoxal induces muscle atrophy and to evaluate the ameliorative effect of moderate-intensity aerobic exercise in a methylglyoxal-induced muscle atrophy animal model. Each mouse was randomly divided into three groups: control, methylglyoxal-treated, and methylglyoxal-treated within aerobic exercise. In the exercise group, each mouse was trained on a treadmill for 2 weeks. On the last day, all groups were evaluated for several atrophic behaviors and skeletal muscles, including the soleus, plantaris, gastrocnemius, and extensor digitorum longus were analyzed. In the exercise group, muscle mass was restored, causing in attenuation of muscle atrophy. The gastrocnemius and extensor digitorum longus muscles showed improved fiber cross-sectional area and reduced myofibrils. Further, they produced regulated atrophy-related proteins (i.e., muscle atrophy F-box, muscle RING-finger protein-1, and myosin heavy chain), indicating that aerobic exercise stimulated their muscle sensitivity to reverse skeletal muscle atrophy. In conclusion, shortness of the gastrocnemius caused by methylglyoxal may induce the dynamic imbalance of skeletal muscle atrophy, thus methylglyoxal may be a key target for treating skeletal muscle atrophy. To this end, aerobic exercise may be a powerful tool for regulating methylglyoxal-induced skeletal muscle atrophy.

Sensitivity analysis of shoulder joint muscles by using the FEM model

  • Metan, Shriniwas.S.;Mohankumar, G.C.;Krishna, Prasad
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • 제3권2호
    • /
    • pp.115-127
    • /
    • 2016
  • Shoulder pain, injury and discomfort are public health and economic issues world-wide. The function of these joints and the stresses developed during their movement is a major concern to the orthopedic surgeon to study precisely the injury mechanisms and thereby analyze the post-operative progress of the injury. Shoulder is one of the most critical joints in the human anatomy with maximum degrees of freedom. It mainly consists of the clavicle, scapula and humerus; the articulations linking them; and the muscles that move them. In order to understand the behavior of individual muscle during abduction arm movement, an attempt has been made to analyze the stresses developed in the shoulder muscles during abduction arm movement during the full range of motion by using the 3D FEM model. 3D scanning (ATOS III scanner) is used for the 3D shoulder joint cad model generation in CATIA V5. Muscles are added and then exported to the ANSYS APDL solver for stress analysis. Sensitivity Analysis is done for stress and strain behavior amongst different shoulder muscles; deltoid, supraspinatus, teres minor, infraspinatus, and subscapularies during adduction arm movement. During the individual deltoid muscle analysis, the von Mises stresses induced in deltoid muscle was maximum (4.2175 MPa) and in group muscle analysis it was (2.4127MPa) compared to other individual four rotor cuff muscles. The study confirmed that deltoid muscle is more sensitive muscle for the abduction arm movement during individual and group muscle analysis. The present work provides in depth information to the researchers and orthopedicians for the better understanding about the shoulder mechanism and the most stressed muscle during the abduction arm movement at different ROM. So during rehabilitation, the orthopedicians should focus on strengthening the deltoid muscles at earliest.