• Title/Summary/Keyword: Muscle Length

Search Result 670, Processing Time 0.031 seconds

Focal Muscle Vibration Changes the Architecture of the Medial Gastrocnemius Muscle in Persons With Limited Ankle Dorsiflexion

  • Moon, Il-Young;Lim, Jin-Seok;Park, Il-Woo;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.29 no.1
    • /
    • pp.48-53
    • /
    • 2022
  • Background: The gastrocnemius tightness can easily occur. Gastrocnemius tightness results in gait disturbance. Thus, various interventions have been used to release a tight gastrocnemius muscle and improve gait performance. Moreover, focal muscle vibration (FMV) has recently been extensively researched in terms of tight muscle release and muscle performance. However, no study has investigated the effects of FMV application on medial gastrocnemius architectural changes. Objects: In this study, we aimed to investigate the effects of FMV on medial gastrocnemius architecture in persons with limited ankle dorsiflexion. Methods: Thirty one persons with <10° of passive ankle dorsiflexion participated in this study. We excluded persons with acute ankle injury within six months prior to study onset, a history of ankle fracture, leg length discrepancy greater than 2 cm, no history of neurological dysfunction, or trauma affecting the lower limb. The specifications of the FMV motor were as follows: a fixed frequency (fast wave: 150 Hz) and low amplitude (0.3-0.5 mm peak to peak) of vibration; the motor was used to release the medial gastrocnemius for 15 minutes. Each participant completed three trials for 10 days; a 30-second rest period was provided between each trial. Medial gastrocnemius architectural parameters [muscle thickness (MT), fiber bundle length (FBL), and pennation angle (PA)] were measured via ultrasonography. Results: MT significantly decreased after FMV application (p < 0.05). FBL significantly increased from its baseline value after FMV application (p < 0.05). PA significantly decreased from its baseline value after FMV application (p < 0.05). Conclusion: FMV application may be advantageous in reducing medial gastrocnemius excitability following a decrease in the amount of contractile tissue. Furthermore, FMV application can be used as a stretching method to alter medial gastrocnemius architecture.

Relationship of Maximal Take-off Speed to Power and Shortening llelocitv of Hindlimb Muscle in Anuran Amphibians (무미양서류의 도약속도와 다리근육의 동력 및 수축속도와의 관계)

  • 최인호
    • The Korean Journal of Zoology
    • /
    • v.39 no.2
    • /
    • pp.132-138
    • /
    • 1996
  • To learn how maximal locomotory speed of animals is defined in terms of hindlimb structure and muscle contractile function, take-off speed, hindlimb length, thigh muscle mass, shortening velocity and power of the sastrocnemius muscle were measured with one fast species, Rono nigromaculota and one relatively slowresponding species, Bombina orientalis. Take-off speed (m.sec-1) was greater in R. nigromoculata $(2.4\pm0.2SD, $ n: 14) than in the Bombino $(1.6\pm0.1SD, $ n=8). Stvle of the take-off response was a long-iump type in the Rano and a short-ranged hopping in the Bombing. Faster take-off capacity of the ranid frogs was supported by the longer hindlimb length (relative to body length) and the more massive thigh muscles (relative to body mass), compared to the Bombina. Further, the ranids exhibited faster maximal shortening velocity and Breater maximal power generateion than the Bombina [Vmax $(ML.sec-1)=11.79\pm1.69SD$ for the Runa and $9.74\pm1.27SD$ for the Bombina; Pmax $nW.kg-1)=222.42\pm42.42SD$ for the Rono and $169.03\pm34.52SD$ for the Bombinal. With more massive thigh muscles and greater mechanical power, the ranids would generate greater total power and thus higher energy release per unit time to muscle tissues for the burst take-off. As a consequence, biomechanical properties seen in the ranids seem to be more effective for frost take-off than in the Bombina.

  • PDF

An Algorithm for Estimating Muscle Forces using Joint Angle (관절각도를 이용한 근력 추정 알고리듬)

  • Son, J.S.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.241-246
    • /
    • 2009
  • Since inappropriate muscle forces mean that people cannot perform some activities related to roles of the muscle, muscle forces have been considered as an important parameter in clinic. Therefore, many methods have been introduced to estimate muscle forces indirectly. One of the methods is muscle tissue dynamics and it is widely used in commercial softwares including musculoskeletal model, such as SIMM. They, however, need motion data captured from 3-dimensional motion analysis system. In this study, we introduced an algorithm to estimate muscle forces in real-time by using joint angles. The heel-rise movements were performed for a normal with 3-dimensional motion analysis system, EMG measurement system, and electrogoniometers. Joint angles obtained from electrogoniometers and EMG signals were used to estimate muscle forces. Simulation was performed to find muscle forces using motion data which was imported into musculoskeletal software. As the results, muscle lengths and forces from the developed algorithm were similar to those from commercial software in pattern. Results of this study would be helpful to implement a tool to calculate reasonable muscle forces in real-time.

The Cumulative Trunk Muscle Fatigue Depending on The Length of Recovery Time (작업 중 여유시간 변화에 따른 몸통 근육 누적 피로도)

  • Shin, Hyun-Joo;Kim, Jung-Yong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.33 no.1
    • /
    • pp.44-51
    • /
    • 2007
  • The purpose of this study was to identify the relationship between the cumulative fatigue of trunk muscles andthe period of recovery time during repetitive lifting and lowering tasks with symmetric and asymmetric postures.Ten subjects participated in the experiment. Subjects had 1, 2, 3, 4 and 5 minutes recovery time respectivelywhile they were performing the lifting and lowering task repeatedly for 3 minutes with the weight equivalent to25% level of MVC. EMG signals from ten trunk muscles were collected and the fatigue level was analyzedquantitatively. In results, the local muscle fatigue was no longer accumulated when 5 minutes recovery time wasgiven in symmetric position. For asymmetric position, it took longer minutes to prevent the fatigue accumul-ation. Different trunk muscles indicated slightly different recovery patterns in terms of MPF (Mean Powerfrequency) value.This result would help ergonomist design the length of recovery time to control the cumulative fatigue of trunkmuscles in industry with repetitive lifting and lowering task.

A METHOD FOR ESTIMATING MECHANICAL PARAMETERS OF INTACT HUMAN MUSLE

  • Park, Hyung-Jun;Kusmoto, Hidetada;Akazawa, Kenzo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1867-1872
    • /
    • 1991
  • A method of estimating mechanical parameters of the intact human muscle is proposed; force responses to ramp length perturbation of the muscle both at the resting and constant contracting states are compared with those of the model. The response during the short period (50ms) after the onset of the perturbation is used for the estimation. Time course of the length perturbation which could lead to the accurate estimation is determined by model analysis. Availability of this method is showed by applying it to the human thumb flexor muscle.

  • PDF

Effects of Negative Pressure Soft Tissue Therapy to Ankle Plantar Flexor on Muscle Tone, Muscle Stiffness, and Balance Ability in Patients with Stroke

  • Kim, Kyu Ryeong;Shin, Houng Soo;Lee, Sang Bin;Hwang, Hyun Sook;Shin, Hee Joon
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.9 no.2
    • /
    • pp.1468-1474
    • /
    • 2018
  • The purpose of the study was to investigate the immediate effects of negative pressure soft tissue therapy on muscle tone, muscle stiffness and balance in patients with stroke. In total, 20 patients with stroke and assigned to the negative pressure soft tissue therapy group (NPST, n=10) or, placebo-negative pressure soft tissue therapy group(Placebo-NPST, n=10). Both groups underwent NPST or placebo-NPST once a day during the experimental period. MyotonPRO was used to assess the parameters for muscle tone and stiffness. Biorescue was used to assess the parameters for balance. Each group showed improvements in muscle tone, muscle stiffness, and balance ability (p<.05). Especially, Muscle tone, muscle stiffness, and anterior length in the limit of stability were the significant improvement on NPST group (p<.05). The results of the study suggest that the NPST is effective in improving muscle tone, muscle stiffness, and balance ability in patients with stroke.

Effectiveness of Transcutaneous Electrical Nerve Stimulation(TENS) on the Changes of Postural Balance and Muscle Contraction following Muscle Fatigue (경피신경전기자극이 근피로에 의한 자세균형과 근수축력의 변화에 미치는 효과)

  • Cho, Hwi-Young;Lee, Sun-Hyun;In, Tae-Sung;Kang, Sun-Hee;Lee, Dong-Yeop;Song, Chang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4418-4426
    • /
    • 2010
  • Muscle fatigue often induces deterioration of postural balance and muscle contraction, such as strength or maximal voluntary contraction(MVC). This study was to investigate the effects of transcutaneous electrical stimulation(TENS) applied to the fatigued muscles on postural imbalance and decline in muscle strength following fatigue of triceps surae. For the 4 months from March, 2010, twenty healthy subjects without vestibular disease and visual disturbance were recruited and induced muscle fatigue of triceps surea performed by repeated voluntary contraction. TENS was applied to gastocnemius immediately after development of muscle fatigue. Postural sway length, velocity and MVC were recorded under these conditions: pre-fatigue, post-fatigue, and TENS application to fatigued muscle during post-fatigue. Muscle fatigue increased postural imbalance as expressed by sway length and velocity and decreased muscle contraction(p<.05), while TENS improved the postural imbalance and MVC following muscle fatigue during stance(p<.05). The results suggested that fatigue on plantar flexor is associated with postural balance and muscle contraction, and TENS application to fatigued muscle was effective in improving postural imbalance and decline in muscle strength following muscle fatigue. TENS will be an effective method in exercise, working environment and daily life.

Identification of Non-Muscle Nebulin Isoform in Human Brain Library

  • Joo, Young-Mi;Lee, Min-A;Choi, Pyung-Rak;Choi, Jae-Kyoung;Lee, Yeong-Mi;Choi, Su-Il;Kim, Myong-Shin;Jeon, Eun-Hee;Kim, So-Young;Kim, Chong-Rak
    • Biomedical Science Letters
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2004
  • Nebulin is a (Mr 600∼900 kDa) large actin-binding protein specific to skeletal muscle and thought to act as a molecular template that regulates the length of thin filaments. Cardiac muscles of higher vertebrates have been shown earlier to lack nebulin. Recently, full-length nebulin mRNA transcripts have been detected in heart muscle, but at lower levels than in skeletal muscle. Nebulin expression also was detected in the kidney, eye, and otic canal, suggesting that nebulin isoforms may also be expressed in these organs. We have searched for nebulin isoforms in brain of human using PCR and Northern blot. Here, we provide evidence that nebulin mRNA transcripts are expressed in brain. Seven nebulin isoforms (B, C, D, E, F, G and H form) are obtained in human skeletal muscle and four isoforms (B, C, G and H form) in human brain cDNA library. We cloned the 1.3 kb of nebulin fragment from human adult brain library by PCR. The identity of the PCR product was confirmed by sequence analysis. The partial brain nebulin sequence was 99% identical to the skeletal muscle cDNA as determined by Blast alignment. It contains two simple-repeats HR1, HR2 and linker-repeats exon l35∼143 except exon 140. It was different from skeletal muscle B form, which contain HR1 and HR8. These data suggest that nebulin isoform diversity occurs even more extensively than previously known, likely contributing to the distinct thin filament architecture of different striated muscles.

  • PDF

The Analysis of the Muscle Fatigue for the Lower Limbs Muscle during the Level and Downhill Running (평지와 내리막 달리기 시 하지 근육의 근 피로에 관한 연구)

  • Moon, Gon-Sung;Lee, Eui-Lin
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.181-190
    • /
    • 2007
  • The purpose of this study was to analyze the muscle fatigue for lower limbs during the level and downhill running. The subjects were 6 males of twenties who have no experience to get the injury in the lower limbs and required to run on the level and downhill which was -7% grade treadmill at 8.3km/h. EMG signal was gained by ME3000P8 Measurement Unit and computed the Median Frequency(MF) with the power spectrum analysis in the Megawin software. Rectus femoris(RF), Vastus lateralis(VL), Gluteus medius(GLU), Biceps Femoris(BF), gastrocnemius medial head(GM), gastrocnemius lateral head(GL), Tibialis anterior(TA) were selected. The result of this study were as follows: The MF of RF decreased in the downhill running than level running in length of time but, the MF of VL was opposite. The MF of BF decreased in the level and downhill running, but, the MF of BF decreased much in the level than downhill running. The MF of GLU decreased much in the downhill running but, almost no change in the level running. The MF of TA decreased in the level running than downhill running. The MF of GL decreased in the level running but, the MF of GM decreased in the downhill running in length of time. This study analyzed the muscle fatigue of the lower limbs with the median frequency on the basis of an assumption that the impact force for the flexion and extension of the joint and the body mass may be much in the eccentric contraction such as the downhill running than level running. RF and GM showed the muscle fatigue in the downhill running than level running. BF and GL showed the muscle fatigue in the level running than downhill running.