• 제목/요약/키워드: Muscle Fiber Characteristics

검색결과 90건 처리시간 0.019초

Overview of muscle metabolism, muscle fiber characteristics, and meat quality

  • Choe, Jeehwan
    • 농업과학연구
    • /
    • 제45권1호
    • /
    • pp.50-57
    • /
    • 2018
  • Meat comes from the skeletal muscles of farm animals, such as pigs, chickens, and cows. Skeletal muscles are composed of many muscle fibers. Muscle fibers are categorized into three types, fiber type I, IIA, and IIB, based on their contractile speed and metabolic properties. Different muscle fiber types have different biochemical, physiological, and biophysical characteristics. Especially, the characteristics of muscle fiber type I and IIB are opposite to each other. Muscle fiber type I has a relatively strong oxidative metabolic trait and a higher content of lipids. In contrast to fiber type I, muscle fiber type IIB has a strong glycolytic metabolic trait and a relatively lower content of lipids and a higher content of glycogen. Muscle fiber type IIA has intermediate properties between fiber type I and IIB. Thus, muscles with different fiber type compositions exhibit different ante- and post-mortem muscle characteristics. In particular, the different metabolic traits of muscles due to the different compositions of the fiber types strongly affect the biochemical and physiological processes during the conversion of muscle to meat and subsequently influence the quality of the meat. Therefore, understating muscle metabolism and muscle fiber characteristics is very important when discussing the traits of meat quality. This review is an overview on basic muscle metabolism, muscle fiber characteristics, and their influence on meat quality and finally provides a comprehensive understanding about the fundamental traits of muscles and meat quality.

Comparative review of muscle fiber characteristics between porcine skeletal muscles

  • Junyoung Park;Sung Sil Moon;Sumin Song;Huilin Cheng;Choeun Im;Lixin Du;Gap-Don Kim
    • Journal of Animal Science and Technology
    • /
    • 제66권2호
    • /
    • pp.251-265
    • /
    • 2024
  • Meat derived from skeletal muscles of animals is a highly nutritious type of food, and different meat types differ in nutritional, sensory, and quality properties. This study was conducted to compare the results of previous studies on the muscle fiber characteristics of major porcine skeletal muscles to the end of providing basic data for understanding differences in physicochemical and nutritional properties between different porcine muscle types (or meat cuts). Specifically, the muscle fiber characteristics between 19 major porcine skeletal muscles were compared. The muscle fibers that constitute porcine skeletal muscle can be classified into several types based on their contractile and metabolic characteristics. In addition, the muscle fiber characteristics, including size, composition, and density, of each muscle type were investigated and a technology based on these muscle fiber characteristics for improving meat quality or preventing quality deterioration was briefly discussed. This comparative review revealed that differences in muscle fiber characteristics are primarily responsible for the differences in quality between pork cuts (muscle types) and also suggested that data on muscle fiber characteristics can be used to develop optimal meat storage and packaging technologies for each meat cut (or muscle type).

Muscle Fiber Characteristics on Chop Surface of Pork Loin (M. longissimus thoracis et lumborum) Associated with Muscle Fiber Pennation Angle and Their Relationships with Pork Loin Quality

  • Song, Sumin;Cheng, Huilin;Jung, Eun-Young;Joo, Seon-Tea;Kim, Gap-Don
    • 한국축산식품학회지
    • /
    • 제40권6호
    • /
    • pp.957-968
    • /
    • 2020
  • The influence of muscle architecture on muscle fiber characteristics and meat quality has not been fully elucidated. In the present study, muscle fiber characteristics on the chop surface of pork loin (M. longissimus thoracis et lumborum, LTL), pennation angle degree, and meat quality were evaluated to understand the pork LTL architecture and its relationship with the loin chop quality. Muscle fiber pennation degree ranged from 51.33° to 69.00°, resulting in an ellipse-shaped muscle fiber on the surface of pork loin chop. The cross-sectional area (CSA) on the sections cut vertical to the muscle length (M-Vertical) was considerably larger (p<0.05) than that on the sections cut vertical to the muscle fiber orientation (F-Vertical) regardless of the fiber type. Pennation angle is positively correlated with CSAs of F-Vertical (p<0.05) and with Warner-Bratzler shear force (r=0.53, p<0.01). Besides the shear force, lightness and pH were positively correlated with the fiber composition and CSA of IIX fiber (p<0.05); however, the redness, yellowness, drip loss, and cooking loss were not correlated with the pennation angle and muscle fiber characteristics on the chop surface (p>0.05). These observations might help us in better understanding pork loin architecture and the relationship between the pennation angle, muscle fiber characteristics, and meat quality of pork loin chop.

Muscle Fiber Characteristics and Their Relationship to Water Holding Capacity of Longissimus dorsi Muscle in Brahman and Charolais Crossbred Bulls

  • Waritthitham, A.;Lambertz, C.;Langholz, H.-J.;Wicke, M.;Gauly, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권5호
    • /
    • pp.665-671
    • /
    • 2010
  • Muscle fiber characteristics and their relationship to water-holding capacity of longissimus dorsi (ld) muscle were studied in Brahman (BRA) and Charolais (CHA) crossbred bulls fattened under practical farm conditions. Thirty-four BRA and 34 CHA bulls were randomly selected and slaughtered at 500, 550 and 600 kg live weight. Parameters of water-holding capacity such as drip, ageing, thawing, cooking and grilling loss were determined. Muscle fiber characteristics were conducted for muscle fiber type percentage and cross-sectional areas of slow- and fast-twitch fiber types, and correlation coefficients to water-holding capacity parameters were calculated. Results showed that CHA meat had a better water-holding capacity (less ageing, thawing and grilling loss) when compared with BRA, whereas slaughter weights had no significant effects on these parameters. Furthermore, there were no significant differences between genotypes and slaughter weights in muscle fiber type percentage and cross-sectional areas of ld muscle. Slow- and fast-twitch fiber types of all experimental groups averaged 24.4 and 75.6%, respectively. Cross-sectional areas of fast-twitch fibers had almost twice the size of slow-twitch fibers (6,721 and 3,713 ${\mu}m^2$, respectively). The correlation between muscle fiber area and water-holding capacity indicated that muscles with larger fiber areas had a lower drip and ageing loss but a higher cooking and grilling loss.

Effects of Muscle Mass and Fiber Number of Longissimus dorsi Muscle on Post-mortem Metabolic Rate and Pork Quality

  • Ryu, Youn-Chul;Choi, Young-Min;Kim, Byoung-Chul
    • Food Science and Biotechnology
    • /
    • 제14권5호
    • /
    • pp.667-671
    • /
    • 2005
  • The aim of this study is to investigate the effects of the muscle mass and fiber number on post-mortem metabolic rates and pork quality. Carcass traits, muscle fiber characteristics, and type of fiber composition were evaluated using a sample of 200 cross-bred pigs. The muscle mass was divided into two groups according to carcass weight and loin-eye area measurements (heavy or light). In addition, the muscle histological characteristics were divided into two groups according to the muscle fiber density and total number of muscle fibers (high or low). All the carcass traits were significantly different in the muscle mass groups. Increasing weight significantly affected the cross-sectional area (CSA) of all fibers. The low group, which had a low muscle fiber number indicating a larger CSA of fibers, and especially the heavy-low group had the highest CSA levels of fibers. The fiber number percentage and the area percentage were significantly different in the groups categorized by fiber number. The heavy-high group indicated a normal rate of pH decline and the R-value. In addition, pigs with a heavy muscle mass and high muscle fiber number indicated normal drip loss, lightness, and protein denaturation. The present results suggest that increasing the total muscle fiber number has a beneficial effect on increasing the muscle mass without deteriorating the meat quality.

Poultry Meat Quality in Relation to Muscle Growth and Muscle Fiber Characteristics

  • Ismail, Ishamri;Joo, Seon-Tea
    • 한국축산식품학회지
    • /
    • 제37권6호
    • /
    • pp.873-883
    • /
    • 2017
  • Variations in the definition of poultry meat quality exist because the quality traits are not solely based on intrinsic and extrinsic factors but also consumers' preference. Appearance quality traits (AQT), eating quality traits (EQT), and reliance quality traits (RQT) are the major factors focused by the consumer before buying good quality of poultry meat. AQT and EQT of poultry meat are controlled by physical and biochemical characteristics of muscle fibers which can be categorized into a total number of fibers (TNF), cross-sectional area of fibers (CSAF), and fiber type composition (FTC). In poultry meat, it has been shown that muscle fiber properties play a key role in meat quality because numerous studies have reported the relationships between quality traits and fiber characteristics. Despite intensive research has been carried out to manipulate the muscle fiber to improve poultry meat quality, demand in a rapid growth of poultry muscle has correlated to the deterioration in the meat quality. The present paper reviews the definition of poultry meat quality, meat quality traits, and variations of meat quality. Also, this review presents recent knowledge underlying the relationship between poultry meat quality traits and muscle fiber characteristics.

Comparison of Chemical Composition, Quality, and Muscle Fiber Characteristics between Cull Sows and Commercial Pigs: The Relationship between Pork Quality Based on Muscle Fiber Characteristics

  • Jeong-Uk Eom;Jin-Kyu Seo;Kang-Jin Jeong;Sumin Song;Gap-Don Kim;Han-Sul Yang
    • 한국축산식품학회지
    • /
    • 제44권1호
    • /
    • pp.87-102
    • /
    • 2024
  • This study aims to compare the chemical composition, quality, and muscle fiber characteristics of cull sows and commercial pigs, investigating the effect of changes in muscle fiber characteristics on pork quality. The proximate composition, color, pH, water-holding capacity (drip loss and cooking loss), protein solubility, total collagen content, and muscle fiber characteristics of cull sows (n=20) and commercial pigs (n=20) pork were compared. No significant differences were found between cull sows and commercial pigs in terms of proximate composition, drip loss, protein solubility, or total collagen content of their meat (p<0.05). However, cull sow pork exhibited a red color and a higher pH (p<0.05). This appears to be the result of changes in muscle fiber number and area composition (p<0.05). Cull sow meat also displayed better water-holding capacity as evident in a smaller cooking loss (p<0.05), which may be related to an increase in muscle fiber cross-sectional area (p<0.05). In conclusion, muscle fiber composition influences the pork quality; cull sow pork retains more moisture when cooked, resulting in minimal physical loss during processing and can offer more processing suitability.

Possible Muscle Fiber Characteristics in the Selection for Improvement in Porcine Lean Meat Production and Quality

  • Kim, J.M.;Lee, Y.J.;Choi, Y.M.;Kim, B.C.;Yoo, B.H.;Hong, K.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권10호
    • /
    • pp.1529-1534
    • /
    • 2008
  • The aim of this study was directed at exploring the possible use of muscle fiber characteristics as new selection traits for improving both porcine lean meat production and quality. A total of 174 (114 Yorkshire, 30 Landrace, and 30 Meishan) pigs were used for this study, and lean meat production ability was estimated by backfat thickness and loin eye area. The Longissimus dorsi muscle was taken in order to measure meat quality and muscle fiber characteristics. Due to the high correlations between total muscle fiber number and most of the performance traits, all pigs were classified into three groups (low, intermediate, or high) by total muscle fiber number using cluster analysis. The high group had the highest loin eye area (p<0.001). The meat quality traits were within normal ranges as reddish pink, firm, and nonexudative (RFN) pork, but the groups classified as intermediate and high had relatively large drip loss percentages (p<0.05), produced more than twice the amount of pale, soft, and exudative (PSE) pork as compared to the low group. The group with a high total muscle fiber number was further classified, based on type 2b fiber percentage, into low or high groups by cluster analysis. The results showed that the low type 2b fiber group had good loin eye area (p<0.05), small drip loss (p<0.05), and did not produce PSE pork. For these reasons, a high total muscle fiber number, with a low percentage of type 2b fibers, may be suitable in selecting for improvements in both lean meat production and meat quality.

The Relationships between Muscle Fiber Characteristics, Intramuscular Fat Content, and Fatty Acid Compositions in M. longissimus lumborum of Hanwoo Steers

  • Joo, Seon-Tea;Joo, Sung-Hyun;Hwang, Young-Hwa
    • 한국축산식품학회지
    • /
    • 제37권5호
    • /
    • pp.780-786
    • /
    • 2017
  • The objective of this study was to investigate the relationship between muscle fiber characteristics, intramuscular fat (IMF) content, and fatty acids composition in longissimus lumborum (LL) muscle from Hanwoo steers. The LL muscles were obtained from four quality grades (QG) carcasses and subjected to histochemical analysis. There were significant (p<0.05) differences in fiber number percentage (FNP) and fiber area percentage (FAP) of muscle fiber types among muscles from four QGs. Both FNP and FAP of type I increased while those of type IIB decreased with increasing QG from QG 2 to QG $1^{{+}{+}}$ (p<0.05). Also, with increasing QG, the saturated fatty acid (SFA) proportion decreased while monounsaturated fatty acid (MUFA) increased significantly (p<0.05). IMF content was positively correlated with both FNP and FAP of type I, but negatively correlated with those of type IIB. The proportions of SFA and MUFA were significantly (p<0.001) correlated with both type I and IIB composition. These results implied that muscle fiber type composition is an important factor influencing fatty acid composition in LL muscle of Hanwoo steer.

Comparison of Muscle Fiber and Meat Quality Characteristics in Different Japanese Quail Lines

  • Choi, Y.M.;Hwang, S.;Lee, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제29권9호
    • /
    • pp.1331-1337
    • /
    • 2016
  • The aim of this study was to compare the growth performance, fiber characteristics of the pectoralis major muscle, and meat quality characteristics in the heavy weight (HW) and random bred control (RBC) quail lines and genders. The HW male exhibited more than two times greater body (245.7 vs 96.1 g, p<0.05) and pectoralis major muscle (PMW; 37.1 vs 11.1 g, p<0.05) weights compared to the RBC female. This growth performance in the HW line was associated with a greater muscle fiber area (1,502 vs $663.0{\mu}m^2$, p<0.001) compared to the RBC line. Greater muscle mass of the HW male was accompanied by a higher percentage of type IIB fiber compared to the HW female (64.0% vs 51.0%, p<0.05). However, muscle fiber hyperplasia (increase in fiber number) has had a somewhat limited effect on PMW between the two lines. On the other hand, the HW line harboring a higher proportion of type IIB fiber showed rapid pH decline at the early postmortem period (6.23 vs 6.41, p<0.05) and lighter meat surface (53.5 vs 47.3, p<0.05) compared to the RBC line harboring a lower proportion of type IIB fiber. There were no significant differences observed in the measurement of water-holding capacity including drip loss (2.74% vs 3.07%, p>0.05) and cooking loss (21.9% vs 20.4%, p>0.05) between the HW and RBC lines. Therefore, the HW quail line developed by selection from the RBC quail, was slightly different in the meat quality characteristics compared to the RBC line, and a marked difference was found in growth performance between the two quail lines.