• Title/Summary/Keyword: Muscarinic receptor subtypes

Search Result 16, Processing Time 0.022 seconds

Mutation of a Transposed Amino Acid Triplet Repeat Enhances Coupling of m1 Muscarinic Receptor to Activation of Phospholipase C

  • Lee, Seok-Yong;Cho, Tai-Soon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.206-206
    • /
    • 1996
  • The C-terminus ends of the second putative transmembrane domains of both m1 and m2 muscarinic receptors contain a triplet of amino acid residues consisting of leucine (L), tyrosine (Y) and threonine (T), This triplet is repeated as LYT-LYT in m2 receptors at the interface between the second transmembrane domain and the first extracellular loop. Interestingly, however, it is repeated in a transposed fashion (LYT-TYL) in the sequence of m1 receptors. In this work we employed site-directed mutagenesis to investigate the possible significance of this unique sequence diversity for determining the distinct differential drug-receptor interaction and cellular function at m1 muscarinic receptor. Mutation of the LYTTYL sequence of m1 receptors to the corresponding m2 receptor LYTLYT sequence, however, did not result in a significant change in the binding affinity of the agonist carbachol or in the affinity of the majority of a series of receptor antagonists which are able to discriminate between wild-type m1 and m2 receptors. Surprisingly, the LYTLYT ml receptor mutant demonstrated markedly enhanced coupling to activation of phospholipase C without a change in its coupling to increased cyclic AMP formation. There was also an enhanced receptor sensitivity in transducing elevation of intracellular Ca$\^$2+/. These changes were not due to alterations in the rate of receptor. desensitization or sequestration, On the other hand, the reverse LYTLYT-LYTTYL mutation in the m2 receptor did not alter its coupling to inhibition of adenylate cyclase, but slightly enhanced its coupling to stimulation of PI hydrolysis, Our data suggest that the LYTTYL/LYTLYT sequence difference between ml and n12 muscarinic receptors is not involved in determining receptor pharmacology. On the other hand, while these differences might play a role in the modulation of muscarinic receptor coupling to PI hydrolysis, they are not important for specifying coupling of various subtypes of muscarinic receptors to different cellular signaling pathways.

  • PDF

Enhanced Coupling of $M_1$ Muscarinic Receptors to Activation of Phospholipase C upon Mutation of a Transposed Amino Acid Triplet Repeat

  • Lee, Seok-Yong;Sung, Ki-Wug;Kim, Ok-Nyu;Lee, Sang-Bok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 1997
  • The C-terminus ends of the second putative transmembrane domains of both $M_1$ and $M_2$ muscarinic receptors contain a triplet of amino acid residues consisting of leucine (L), tyrosine (Y) and threonine (T). This triplet is repeated as LYT-TYL in $M_1$ receptors at the interface between the second transmembrane domain and the first extracellular loop. Interestingly, however, it is repeated in a transposedfashion (LYT-LYT) in the sequence of $M_2$ receptors. In our previous work, we investigated the possible significance of this unique sequence diversity for determining the distinct differential receptor function at the two receptor subtypes. However, we found mutation of the LYTTYL sequence of $M_1$ receptors to the corresponding $M_2$ receptor LYTLYT sequence demonstrated markedly enhanced the stimulation of phosphoinositide (PI) hydrolysis by carbachol without a change in its coupling to increased cyclic AMP formation. In this work, thus, the enhanced stimulation of PI hydrolysis in the LYTLYT $M_1$ receptor mutant was further investigated. The stimulation of PI hydrolysis by carbachol was enhanced in the mutant $M_1$ receptor, and this change was not due to alterations in the rate of receptor desensitization or sequestration. The observed larger response to carbachol at mutant $M_1$ receptors was also not due to an artifact resulting from selection of CHO cells which express higher levels of G-proteins or phospholipase C. Our data suggest that although the LYTTYL sequence in $M_1$ muscarinic receptors is not involved in determining receptor pharmacology, mutation of the sequence enhanced the coupling of $M_1$ receptors to the stimulation of phospholipase C.

  • PDF

Functional Properties of Human Muscarinic Receptors Hm1, Hm2 and Hm3 Expressed in a Baculovirus/Sf9 Cell System

  • Woo, Hyun-Ae;Woo, Yae-Bong;Bae, Seung-Jin;Kim, Hwa-Jung
    • Biomolecules & Therapeutics
    • /
    • v.7 no.4
    • /
    • pp.307-314
    • /
    • 1999
  • The human muscarinic acetylcholine receptor (mAChR) subtypes Hml, Hm2 and Hm3 have been expressed in insect cells (Spodoptera frugiperda, Sf9) using the baculovirus expression system. Expression of relevant DNA, transcript and receptor proteins was identified by PCR, Northern blotting and [$^{3}H$]QNB binding, respectively. As assessed by [$^{3}H$]QNB binding sites, yields of muscarinic receptors in membrane preparations in this study were as about 5-20 times high as those in mammalian cells reported in previous studies. The [$^{3}H$]QNB competition binding studies with well-known subtype-selective mAChR antagonists showed that the receptors expressed in Sf9 cells retain the pharmacological characteristics expected for the ml , m2 and m3 muscarinic receptors. The ml-selective antagonist, pirenzepine, displayed a considerably higher affinity for Hml by 110-fold and 35-fold than for Hm2 and Hm3, respectively, The m2-selective methoctramine displayed a significantly higher affinity for Hm2 than for Hml and Hm3 (10- and 26-fold, respectively). p-F-HHSiD exhibited high affinity for Hm3 that is not significantly different from those for Hml, but 66-fold higher than its affinity for Hm2. The functional coupling of the recombinant receptors to second messenger systems was also examined. While both Hml and Hm3 stimulated phosphoinositide hydrolysis upon activation by carba-chol, Hm2 produced no response. On the other hand, activation of mAChRs induced the inhibition of forsko-lin-stimulated cyclic AMP formation in Hm2-expressing cells, whereas the significant dose-dependent increase in or poor response on cyclic AMP formation were produced in Hml or Hm3-expressing cells, respectively. These results indicate the differential coupling of recombinant Hml, Hm2 and Hm3 receptors expressed in SF9 cells to intracellular signalling system.

  • PDF

Effects of Site-Mutagenesis of an Amino Acid Triplet Repeat at $M_1$ and $M_2$ Muscarinic Receptors on Receptor Function ($M_1$$M_2$ 무스카린성 수용체에서 아미노산 Triplet Repeat의 Site-Mutagenesis가 수용체기능에 미치는 영향)

  • Lee, Seok-Yong;Lee, Sang-Bok
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.3
    • /
    • pp.311-321
    • /
    • 1996
  • Both $M_1$ and $M_2$ muscarinic receptors contain a triplet of amino acid residues consisting of leucine (L), tyrosine (Y) and threonine (T) at C-terminus ends of the second putative transmembrane domains. This triplet is repeated as LYT-LYT in $M_2$ receptors at the interface between the second transmembrane domain and the first extracellular loop. Interestingly, however, it is repeated in a transposed fashion (LYT-TYL) in the sequence of $M_1$ receptors. In this work, we employed site-directed mutagenesis to investigate the possible significance of this unique sequence diversity for determining the distinct differential cellular function at the two receptor subtypes. Mutation of the LYTTYL sequence of $M_1$ receptors to the corresponding $M_2$ receptor LYTLYT sequence did not result in a significant change in the binding affinity of the agonist carbachol. The reverse mutation at the $M_2$ receptor also did not modify agonist affinity. Surprisingly, the LYTLYT $M_1$ receptor mutant demonstrated markedly enhanced coupling to activation of phospholipase C without a change in its coupling to increased cyclic AMP formation. There was also an enhanced receptor sensitivity in transducing elevation of intracellular $Ca^{2+}$. On the other hand, the reverse $LYTLYT{\rightarrow}LYTTYL$ mutation in the $M_2$ receptor did not alter its coupling to inhibition of adenylate cyclase, but slightly enhanced its coupling to stimulation of phosphoinositide (PI) hydrolysis. Our data suggest that the LYTTYL/LYTLYT sequence differences between $M_1$ and $M_2$ muscarinic receptors are not important for specifying ligand binding and coupling of various subtypes of muscarinic receptors to different cellular signaling pathways although they might play a role in the modulation of muscarinic reseptor coupling to PI hydrolysis.

  • PDF

Effect of Ca2+ on contractile responses induced by perivascular nerve stimulation in isolated coronary artery of pig

  • Hong, Yong-geun;Shim, Cheol-soo;Kim, Joo-heon
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.4
    • /
    • pp.702-709
    • /
    • 1999
  • The present study was performed to elucidate the effects of extracellular $Ca^{2+}$ on contractile responses in isolated porcine coronary artery ring using by perivascular nerve stimulation (PNS). Especially, the study was focused on the source of $Ca^{2+}$ on $P_{2X}$-purinoceptor mediated muscle contraction which one of $P_2$-purinoceptor subtypes. The following results can be drawn from these studies : 1. The phasic contractions induced by PNS were inhibited with muscarinic receptor antagonist, atropine ($10^{-6}M$). 2. The phasic contractions induced by PNS were significantly inhibited by sequential treatment with atropine and adrenergic neural blocker, guanethidine ($10^{-6}M$). 3. The phasic contractions induced by PNS were inhibited with $P_{2X}$-purinoceptor desensitization by repetitive application of $\alpha$,$\beta$-Me ATP ($10^{-4}M$). 4. The phasic contractions induced by PNS were so weakened in calcium-free medium. 5. The phasic contractions induced by PNS were inhibited with calcium channel blocker, verapamil ($10^{-6}{\sim}5{\times}10^{-6}M$). 6. The phasic contractions induced by PNS on pretreated with verapamil ($10^{-6}{\sim}5{\times}10^{-6}M$) were not changed by $\alpha$,$\beta$-Me ATP ($10^{-4}M$). These results demonstrate that the neurogenic phasic contractions induced by PNS are due to adrenergic-, cholinergic- and $P_{2X}$-purinergic receptors and the origin of $Ca^{2+}$ on $P_{2X}$-purinoceptor mediated muscle contraction is extracellular $Ca^{2+}$ through plasmalemmal $Ca^{2+}$ channels.

  • PDF