• Title/Summary/Keyword: Municipal Solid Waste Generation

Search Result 48, Processing Time 0.023 seconds

A comprehensive optimization model for integrated solid waste management system: A case study

  • Paul, Koushik;Chattopadhyay, Subhasish;Dutta, Amit;Krishna, Akhouri P.;Ray, Subhabrata
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.220-237
    • /
    • 2019
  • Solid waste management (SWM) is one of the poorly rendered services in developing countries - limited resources, increasing population, rapid urbanization and application of outdated systems leads to inefficiency. Lack of proper planning and inadequate data regarding solid waste generation and collection compound the SWM problem. Decision makers need to formulate solutions that consider multiple goals and strategies. Given the large number of available options for SWM and the inter-relationships among these options, identifying SWM strategies that satisfy economic or environmental objectives is a complex task. The paper develops a mathematical model for a municipal Integrated SWM system, taking into account waste generation rates, composition, transportation modes, processing techniques, revenues from waste processing, simulating waste management as closely as possible. The constraints include those linking waste flows and mass balance, processing plants capacity, landfill capacity, transport vehicle capacity and number of trips. The linear programming model integrating different functional elements was solved by LINGO optimization software and various possible waste management options were considered during analysis. The model thus serves as decision support tool to evaluate various waste management alternatives and obtain the least-cost combination of technologies for handling, treatment and disposal of solid waste.

A Study the Physicochemical Characteristics of Municipal Solid Wastes

  • Kim, Young-Sik
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.4
    • /
    • pp.35-41
    • /
    • 2003
  • The objective of this study was investigate the generation rates, composition, proportion and calorific values each of material in the municipal solid wastes as well as the effect of incineration residual leachate on the environment in Yangsan sanitary landfill site. The results were as follows ; The annual average generation rate of municipal solid wastes in Yang-san is approximately 2.0 kg/cㆍd. The weight percent of combustible matters is on average 78∼87% and the lower heating values of municipal solid wastes is measured to be more than 2,151 kcal/kg after removing the briquette component. The food waste was major source of solid wastes in Yang-san city as 35% and its variation by seasons was negligible. Combustible part was larger than incombustible part of the domestic solid wastes in spring and summer. It is recommended that municipal solid wastes be treated by multiple methods such as the sanitary landfill, resources and recovery, composting and incineration.

Characterization of household solid waste and current status of municipal waste management in Rishikesh, Uttarakhand

  • Rawat, Suman;Daverey, Achlesh
    • Environmental Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.323-329
    • /
    • 2018
  • The municipal solid waste (MSW) management system in one of the Class II Indian cities i.e. Rishikesh was studied and analysed to identify the key issues in solid waste management in the city. A total of 329 solid waste samples from 47 households were collected to characterize the household solid waste (HSW). The average (HSW) generation rate was 0.26 kg/c/d and it was composed of organic waste (57.3%), plastics (14%), paper (10.9%), and glass and ceramic (1.3%) and other materials (16.5%). There was an inverse relationship between household waste generation rate and family size (p < 0.05). The MSW management system practiced in Rishikesh is unsound. There is no waste segregation at source, no provisions of composting and no recycling by formal sector. The collection and transportation of waste is inadequate and inappropriate. Collected waste is dumped in open dumping site without scientific management. Following are some recommendations for developing a sustainable solid waste management system in Rishikesh city: (1) sensitize people for segregation at source; (2) promote reduction, reuse and recycling of wastes; (3) promote community based composting; (4) provision for 100% door to door collection and; (5) formalize the informal sectors such as rag pickers and recycling industries.

Methane emission from municipal solid waste dumpsites: A case study of Chennai city in India

  • Srinivasan, Pavithrapriya;Andimuthu, Ramachandran;S.N., Ahamed Ibrahim;Ramachandran, Prasannavenkatesh;Rajkumar, Easwari;Kandasamy, Palanivelu
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.97-107
    • /
    • 2020
  • The indiscriminate growth in global population poses a threat to the world in handling and disposal of Municipal solid waste. Rapid urban growth increases the production, consumption and generation of Municipal solid waste which leads to a drastic change in the environment. The methane produced from the Municipal Solid waste accounts for up to 11% global anthropogenic emissions, which is a major cause for global warming. This study reports the methane emission estimation using IPCC default, TNO, LandGEM, EPER and close flux chamber from open dump yards at Perungudi and Kodungaiyur in Chennai, India. The result reveals that the methane emission using close flux chamber was in the range of 8.8 Gg/yr-11.3 Gg/yr and 6.1Gg/yr to 9.1 Gg/yr at Kodungaiyur and Perungudi dump yard respectively. The per capita waste generation was estimated based on waste generation and population. The waste generation potential was projected using linear regression model for the period 2017-2050. The trend of CH4 emission in the actual field measurement were increased every year, similarly the emission trend also increased in IPCC default method (mass balance approach), EPER Germany (zero order decay model) where as TNO and Land GEM (first order decay model) were decreased. The present study reveals that Kodungaiyur dump yard is more vulnerable to methane emission compared to Perungudi dump yard and has more potential in waste to energy conversion mechanisms than compare to Perungudi dump yard.

Estimation of Biomass Resources Potential (바이오매스 자원 잠재량 산정)

  • Lee, Joon-pyo;Park, Soon-chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • Biomass has been used for energy sources from the prehistoric age. Biomass are converted into solid, liquid or gaseous fuels and are used for heating, electricity generation or for transportation recently. Solid biofuels such as bio-chips or bio-pellet are used for heating or electricity generation. Liquid biofuels such as biodiesel and bioethanol from sugars or lignocellulosics are well known renewable transportation fuels. biogas produced from organic waste are also used for heating, generation and vehicles. Biomass resources for the production of above mentioned biofuels are classified under following 4 categories, such as forest biomass, agricultural residue biomass, livestock manure and municipal organic wastes. The energy potential of those biomass resources existing in Korea are estimated. The energy potential for dry biomass (forest, agricultural, municipal waste) were estimated from their heating value contained, whereas energy potential of wet biomass (livestock manure, food waste, waste sludge) is calculated from the biological methane potential of them on annual basis. Biomass resources potential of those 4 categories in Korea are estimated to be as follows. Forest biomass 355.602 million TOE, agricultural biomass 4.019 million TOE, livestock manure biomass 1.455 million TOE, and municipal organic waste 1.074 million TOE are available for biofuels production annually.

Decision-making of sustainable municipal solid waste management based on the SWOT analysis: A case study of Gurugram City, Haryana (India)

  • Suman Chauhan;Sandeep
    • Advances in environmental research
    • /
    • v.12 no.1
    • /
    • pp.41-49
    • /
    • 2023
  • In developing countries, solid waste is typically disposed of inappropriately, which has a negative impact on the environment and healthcare. One of the most serious environmental issues is the management of municipal solid waste because of the huge increase in waste generation brought on by industrialization, economic development, urbanization, and the exponential growth of Gurugram City's population. Municipal Corporation Gurugram (MCG) handles solid waste collection, transportation, and disposal. The city generates over 1100 tons of solid waste per day. In consideration of this, the current study employed the strengths, weaknesses, opportunities, and threats framework called SWOT analysis to critically examine the city's current methods for the management of municipal solid waste to provide more effective policy solutions. For conducting the analysis, the questionnaires and other interviews were conducted to gather information from households and officials in the city, and the observation made during field visits were recorded. The analysis shows that the waste management issue is getting worse for a variety of causes, including a lack of regulatory enforcement, insufficient technical and financial resources, insufficient people's participation, inadequate execution of policies, a lack of political priorities, and poor coordination between authorities.

Appropriate Technologies for Municipal Solid Waste Management in Bantayan Island, Philippines

  • Yu, Kwang Sun;Thriveni, Thenepalli;Jang, Changsun;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.54-61
    • /
    • 2017
  • In general, solid waste arises from lots of human activities such as domestic, agricultural, industrial, commercial, waste water treatment, construction, and mining activities etc. If the waste is not properly disposal and treated, it will have a negative impact to the environment, and hygienic conditions in urban areas and pollute the air with greenhouse gases (GHG), ground water, as well as the soil and crops. In this paper, the Carbon Resources Recycling Appropriate Technology Center feasibility studies are reported at Bantayan Island, Philippines on the municipal solid waste management. The present objective of our study is to characterize the municipal solid waste incineration (MSWI) bottom ash and case study of MSWI production status in Bantayan, Philippines. Currently, wide variety of smart technologies available for MSWI management in developed countries. Recycling is the other major alternative process for MSWI landfill issues. In this paper, the feasibility studies of applied appropriate technologies for the municipal solid waste generation in Bantayan Island, Philippines are reported.

Prediction of greenhouse gas emission from municipal solid waste for South Korea

  • Popli, Kanchan;Lim, Jeejae;Kim, Hyeon Kyeong;Kim, Young Min;Tuu, Nguyen Thanh;Kim, Seungdo
    • Environmental Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.462-469
    • /
    • 2020
  • This study is proposing a System Dynamics Model for estimating Greenhouse Gas (GHG) emission from treating Municipal Solid Waste (MSW) in South Korea for years 2000 to 2030. The government of country decided to decrease the total GHG emission from waste sector in 2030 as per Business-as-usual level. In context, four scenarios are generated to predict GHG emission from treating the MSW with three processes i.e., landfill, incineration and recycling. For prior step, MSW generation rate is projected for present and future case using population and waste generation per capita data. It is found that population and total MSW are directly correlated. The total population will increase to 56.27 million and total MSW will be 21.59 million tons in 2030. The methods for estimating GHG emission from landfill, incineration and recycling are adopted from IPCC, 2006 guidelines. The study indicates that Scenario 2 is best to adopt for decreasing the total GHG emission in future where recycling waste is increased to 75% and landfill waste is decreased to 7.6%. Lastly, it is concluded that choosing proper method for treating the MSW in country can result into savings of GHG emission.

A Treatment and Construction Use of Municipal Solid Waste Ash (도시고형 폐기물 소각재의 무해화 처리와 응용)

  • Lee, Jae-Jang;Shin, Hee-Duck;Park, Chong-Lyuck
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.45-49
    • /
    • 2001
  • Many cities and provinces are rapidly depleting landfill spaces. As the result, some municities have adopted to incinerate their municipal solid waste(MSW). The motive behind the choice is that incineration significantly reduces the volume of solid waste in need of disposal, destroys the harmful organic compounds that are present in MSW, and provides an attractive source of alternative energy. Conclusively, the generation of MSW ash is expected to increse in the furture. However, disposing the MSW ash in landfills may not always be an environmentally or an economically feasible solution. This paper addresses the various issues associated with MSW ash and its possible use in construction applications.

  • PDF

Municipal solid waste management in India - Current status, management practices, models, impacts, limitations, and challenges in future

  • Jagriti Patel;Sanskriti Mujumdar;Vijay Kumar Srivastava
    • Advances in environmental research
    • /
    • v.12 no.2
    • /
    • pp.95-111
    • /
    • 2023
  • Pollution, climate change, and waste accumulation are only some of the new problems that have arisen because of the exponential population growth of the past few decades. As the global population expands, managing municipal solid trash becomes increasingly difficult. This is by far the most difficult obstacle for governments to overcome, especially in less developed nations. The improper open dumping of trash, which is causing mayhem across the country, has two immediate effects: it contaminates groundwater and surface water. Air pollution and the accumulation of greenhouse gases are both exacerbated by the release of methane and other harmful waste gases. Leachate from the landfill leaks underground and pollutes groundwater. In most cases, leachate moves into the groundwater zone and pollutes it after forming in association with precipitation that infiltrates via waste. This has far-reaching effects on people's health and disturbs the natural environment. This review article critically examines the current state of Solid Waste Management (SWM), addressing both the highlighted concerns and the government management solutions that have been put in place to address these issues. In addition, the constraints, and difficulties that India will face in the future in terms of solid waste management and the role of models for such a system are discussed.