• Title/Summary/Keyword: Multivariate Time Series

Search Result 145, Processing Time 0.03 seconds

Development of the Autoregressive and Cross-Regressive Model for Groundwater Level Prediction at Muan Coastal Aquifer in Korea (전남 무안 해안 대수층에서의 지하수위 예측을 위한 자기교차회귀모형 구축)

  • Kim, Hyun Jung;Yeo, In Wook
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.23-30
    • /
    • 2014
  • Coastal aquifer in Muan, Jeonnam, has experienced heavy seawater intrusion caused by the extraction of a substantial amount of groundwater for the agricultural purpose throughout the year. It was observed that groundwater level dropped below sea level due to heavy pumping during a dry season, which could accelerate seawater intrusion. Therefore, water level needs to be monitored and managed to prevent further seawater intrusion. The purpose of this study is to develop the autoregressive-cross-regressive (ARCR) models that can predict the present or future groundwater level using its own previous values and pumping events. The ARCR model with pumping and water level data of the proceeding five hours (i.e., the model order of five) predicted groundwater level better than that of the model orders of ten and twenty. This was contrary to expectation that higher orders do increase the coefficient of determination ($R^2$) as a measure of the model's goodness. It was found that the ARCR model with order five was found to make a good prediction of next 48 hour groundwater levels after the start of pumping with $R^2$ higher than 0.9.

Influence of Ownership Structure on Voluntary Accounting Information Disclosure: Evidence from Top 100 Vietnamese Companies

  • TRAN, Quoc Thinh;NGUYEN, Ngoc Khanh Dung;LE, Xuan Thuy
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.1
    • /
    • pp.327-333
    • /
    • 2021
  • Accounting information disclosure by enterprises is important for third-party entities (suppliers, creditors, banks, regulators, etc.). Voluntary accounting information disclosure (VAID) refers to additional information related to business activities shown on the annual report above and beyond the required information about business results and financial position as well as cash flow. This supports the stakeholders gaining useful information to make proper business decisions. The article examines the influence of ownership structure on the voluntary accounting information disclosure of the top 100 Vietnamese listed companies (VN100). Data collected by authors on regular annual reports totaled 425 observations from 2015 to 2019. The article uses OLS to test multivariate regression models with time-series data. The research results show that there are three variables affecting voluntary accounting information disclosure, of which foreign ownership and institution ownership have a positive impact, while concentration ownership has an opposite impact. Accordingly, the managers of VN100 should raise awareness in order to demonstrate the obligation of information providers to users to ensure clarity and completeness. The state agencies should encourage VN100 to enhance voluntary accounting information disclosure. This contributes to improve the information level of Vietnamese listed companies to embrace the trend of international economic integration.

Optimize rainfall prediction utilize multivariate time series, seasonal adjustment and Stacked Long short term memory

  • Nguyen, Thi Huong;Kwon, Yoon Jeong;Yoo, Je-Ho;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.373-373
    • /
    • 2021
  • Rainfall forecasting is an important issue that is applied in many areas, such as agriculture, flood warning, and water resources management. In this context, this study proposed a statistical and machine learning-based forecasting model for monthly rainfall. The Bayesian Gaussian process was chosen to optimize the hyperparameters of the Stacked Long Short-term memory (SLSTM) model. The proposed SLSTM model was applied for predicting monthly precipitation of Seoul station, South Korea. Data were retrieved from the Korea Meteorological Administration (KMA) in the period between 1960 and 2019. Four schemes were examined in this study: (i) prediction with only rainfall; (ii) with deseasonalized rainfall; (iii) with rainfall and minimum temperature; (iv) with deseasonalized rainfall and minimum temperature. The error of predicted rainfall based on the root mean squared error (RMSE), 16-17 mm, is relatively small compared with the average monthly rainfall at Seoul station is 117mm. The results showed scheme (iv) gives the best prediction result. Therefore, this approach is more straightforward than the hydrological and hydraulic models, which request much more input data. The result indicated that a deep learning network could be applied successfully in the hydrology field. Overall, the proposed method is promising, given a good solution for rainfall prediction.

  • PDF

Real-time Monitoring System for Rotating Machinery with IoT-based Cloud Platform (회전기계류 상태 실시간 진단을 위한 IoT 기반 클라우드 플랫폼 개발)

  • Jeong, Haedong;Kim, Suhyun;Woo, Sunhee;Kim, Songhyun;Lee, Seungchul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.6
    • /
    • pp.517-524
    • /
    • 2017
  • The objective of this research is to improve the efficiency of data collection from many machine components on smart factory floors using IoT(Internet of things) techniques and cloud platform, and to make it easy to update outdated diagnostic schemes through online deployment methods from cloud resources. The short-term analysis is implemented by a micro-controller, and it includes machine-learning algorithms for inferring snapshot information of the machine components. For long-term analysis, time-series and high-dimension data are used for root cause analysis by combining a cloud platform and multivariate analysis techniques. The diagnostic results are visualized in a web-based display dashboard for an unconstrained user access. The implementation is demonstrated to identify its performance in data acquisition and analysis for rotating machinery.

A Study on Asymmetry Effect and Price Volatility Spillover between Wholesale and Retail Markets of Fresh squid (신선 물오징어의 도·소매시장 간 가격 변동성의 전이 및 비대칭성 분석에 관한 연구)

  • Kim, Cheolhyun;Nam, Jongoh
    • The Journal of Fisheries Business Administration
    • /
    • v.49 no.2
    • /
    • pp.21-35
    • /
    • 2018
  • Squid is a popular seafood in Korea. However, since the 2000s, the squid production has been declining. The unstable supply of the squid products may cause price fluctuations of fresh and chilled squid. These price fluctuations may be relatively more severe than them of other commodities, because the fresh and chilled squid can not be stored for a long period of time. Thus, this study analyzes the structural characteristics of price volatility and price asymmetry of fresh squid based on off-diagonal GARCH model. Data used to analysis of this study are daily wholesale and retail prices of fresh squid from January 1, 2006 to December 31, 2016 provided in the KAMIS. As theoretical approaches of this study, first of all, the stability of the time series is confirmed by the unit root test. Secondly, the causality between distribution channels is checked by the Granger causality test. Thirdly, the VAR model and the off-diagonal GARCH model are adopted to estimate asymmetry effect and price volatility spillover between distribution channels. Finally, the stability of the model is confirmed by multivariate Q-statistic and ARCH-LM test. In conclusion, fresh squid is found to have shock and volatility spillover between wholesale and retail prices as well as its own price. Also, volatility asymmetry effect is shown in own wholesale or retail price of fresh squid. Finally, this study shows that the decrease in the fresh squid retail price of t-1 period than the increase in the t-1 period has a greater impact on the volatility of the fresh squid wholesale price in t period.

The Study of Failure Mode Data Development and Feature Parameter's Reliability Verification Using LSTM Algorithm for 2-Stroke Low Speed Engine for Ship's Propulsion (선박 추진용 2행정 저속엔진의 고장모드 데이터 개발 및 LSTM 알고리즘을 활용한 특성인자 신뢰성 검증연구)

  • Jae-Cheul Park;Hyuk-Chan Kwon;Chul-Hwan Kim;Hwa-Sup Jang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.95-109
    • /
    • 2023
  • In the 4th industrial revolution, changes in the technological paradigm have had a direct impact on the maintenance system of ships. The 2-stroke low speed engine system integrates with the core equipment required for propulsive power. The Condition Based Management (CBM) is defined as a technology that predictive maintenance methods in existing calender-based or running time based maintenance systems by monitoring the condition of machinery and diagnosis/prognosis failures. In this study, we have established a framework for CBM technology development on our own, and are engaged in engineering-based failure analysis, data development and management, data feature analysis and pre-processing, and verified the reliability of failure mode DB using LSTM algorithms. We developed various simulated failure mode scenarios for 2-stroke low speed engine and researched to produce data on onshore basis test_beds. The analysis and pre-processing of normal and abnormal status data acquired through failure mode simulation experiment used various Exploratory Data Analysis (EDA) techniques to feature extract not only data on the performance and efficiency of 2-stroke low speed engine but also key feature data using multivariate statistical analysis. In addition, by developing an LSTM classification algorithm, we tried to verify the reliability of various failure mode data with time-series characteristics.

The Effects of International Finance Market Shocks and Chinese Import Volatility on the Dry Bulk Shipping Market (국제금융시장의 충격과 중국의 수입변동성이 건화물 해운시장에 미치는 영향)

  • Kim, Chang-Beom
    • Journal of Korea Port Economic Association
    • /
    • v.27 no.1
    • /
    • pp.263-280
    • /
    • 2011
  • The global financial crisis, triggered by the subprime mortgage crisis in 2007, has put the world economy into the recession with financial market turmoil. I tested whether variables were cointegrated or whether there was an equilibrium relationship. Also, Generalized impulse-response function (GIRF) and accumulation impulse-response function (AIRF) may be used to understand and characterize the time series dynamics inherent in economical systems comprised of variables that may be highly interdependent. Moreover, the IRFs enables us to simulate the response in freight to a shock in the USD/JPY exchange rate, Dow Jones industrial average index, Dow Jones volatility, Chinese Import volatility. The result on the cointegration test show that the hypothesis of no cointergrating vector could be rejected at the 5 percent level. Also, the empirical analysis of cointegrating vector reveals that the increases of USD/JPY exchange rate have negative relations with freight. The result on the impulse-response analysis indicate that freight respond negatively to volatility, and then decay very quickly. Consequently, the results highlight the potential usefulness of the multivariate time series techniques accounting to behavior of Freight.

The Analysis of EU Carbon Prices Using SVECM Approach (SVECM 모형을 이용한 탄소배출권 가격 연구)

  • Bu, Gi-Duck;Jeong, Kiho
    • Environmental and Resource Economics Review
    • /
    • v.20 no.3
    • /
    • pp.531-565
    • /
    • 2011
  • All previous studies analyzing multivariate time series data of EUA (European Union Allowance) price commonly used endogenous variables within the four variables and included the period from April to June of 2006 in the analysis, when the price distortion occurred. This study uses graph theory and structural vector error correction model (SVECM) to analyze the daily time series data of the EUA (European Union Allowance) price. As endogenous variables, five variables are considered for the analysis, including prices of crude oil, natural gas, electricity and coal in addition to carbon price. Data period is Phase 2 period (April 21, 2008 to March 31, 2010) to avoid the EUA price distortion of Phase 1 period (2005~2007). Further, the monthly data including the economic variables as endogenous variables are analyzed.

  • PDF

Study on the Forecasting and Relationship of Busan Cargo by ARIMA and VAR·VEC (ARIMA와 VAR·VEC 모형에 의한 부산항 물동량 예측과 관련성연구)

  • Lee, Sung-Yhun;Ahn, Ki-Myung
    • Journal of Navigation and Port Research
    • /
    • v.44 no.1
    • /
    • pp.44-52
    • /
    • 2020
  • More accurate forecasting of port cargo in the global long-term recession is critical for the implementation of port policy. In this study, the Busan Port container volume (export cargo and transshipment cargo) was estimated using the Vector Autoregressive (VAR) model and the vector error correction (VEC) model considering the causal relationship between the economic scale (GDP) of Korea, China, and the U.S. as well as ARIMA, a single volume model. The measurement data was the monthly volume of container shipments at the Busan port J anuary 2014-August 2019. According to the analysis, the time series of import and export volume was estimated by VAR because it was relatively stable, and transshipment cargo was non-stationary, but it has cointegration relationship (long-term equilibrium) with economic scale, interest rate, and economic fluctuation, so estimated by the VEC model. The estimation results show that ARIMA is superior in the stationary time-series data (local cargo) and transshipment cargo with a trend are more predictable in estimating by the multivariate model, the VEC model. Import-export cargo, in particular, is closely related to the size of our country's economy, and transshipment cargo is closely related to the size of the Chinese and American economies. It also suggests a strategy to increase transshipment cargo as the size of China's economy appears to be closer than that of the U.S.

Urban Change Detection for High-resolution Satellite Images Using U-Net Based on SPADE (SPADE 기반 U-Net을 이용한 고해상도 위성영상에서의 도시 변화탐지)

  • Song, Changwoo;Wahyu, Wiratama;Jung, Jihun;Hong, Seongjae;Kim, Daehee;Kang, Joohyung
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1579-1590
    • /
    • 2020
  • In this paper, spatially-adaptive denormalization (SPADE) based U-Net is proposed to detect changes by using high-resolution satellite images. The proposed network is to preserve spatial information using SPADE. Change detection methods using high-resolution satellite images can be used to resolve various urban problems such as city planning and forecasting. For using pixel-based change detection, which is a conventional method such as Iteratively Reweighted-Multivariate Alteration Detection (IR-MAD), unchanged areas will be detected as changing areas because changes in pixels are sensitive to the state of the environment such as seasonal changes between images. Therefore, in this paper, to precisely detect the changes of the objects that consist of the city in time-series satellite images, the semantic spatial objects that consist of the city are defined, extracted through deep learning based image segmentation, and then analyzed the changes between areas to carry out change detection. The semantic objects for analyzing changes were defined as six classes: building, road, farmland, vinyl house, forest area, and waterside area. Each network model learned with KOMPSAT-3A satellite images performs a change detection for the time-series KOMPSAT-3 satellite images. For objective assessments for change detection, we use F1-score, kappa. We found that the proposed method gives a better performance compared to U-Net and UNet++ by achieving an average F1-score of 0.77, kappa of 77.29.