• Title/Summary/Keyword: Multivariate Regression

Search Result 1,491, Processing Time 0.024 seconds

Multivariate Statistical Analysis Approach to Predict the Reactor Properties and the Product Quality of a Direct Esterification Reactor for PET Synthesis (다변량 통계분석법을 이용한 PET 중합공정 중 직접 에스테르화 반응기의 거동 및 생산제품 예측)

  • Kim Sung Young;Chung Chang Bock;Choi Soo Hyoung;Lee Bomsock;Lee Bomsock
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.6
    • /
    • pp.550-557
    • /
    • 2005
  • The multivariate statistical analysis methods, using both multiple linear regression(MLR) and partial least square(PLS), have been applied to predict the reactor properties and the product quality of a direct esterification reactor for polyethylene terephthalate(PET) synthesis. On the basis of the set of data including the flow rate of water vapor, the flow rate of EG vapor, the concentration of acid end groups of a product and other operating conditions such as temperature, pressure, reaction times and feed monomer mole ratio, two multi-variable analysis methods have been applied. Their regression and prediction abilities also have been compared. The prediction results are critically compared with the actual plant data and the other mathematical model based results in reliability. This paper shows that PLS method approach can be used for the reasonably accurate prediction of a product quality of a direct esterification reactor in PET synthesis process.

A Study of Efficient Rock Mass Rating for Tunnel Using Multivariate Analysis (다변량분석을 이용한 터널에서의 효율적인 암반분류에 관한 연구)

  • Wye, Yong-Gon;No, Sang-Lim;Yoon, Ji-Son
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.41-49
    • /
    • 2000
  • Rock Mass Rating has been widely applied to the underground tunnel excavation and many other practical problems in rock engineering. However, Rock Mass Rating is hard, even by the experts of tunnel assessment owing to lack of investigation system. In this study, using multivariate analysis we presented rock mass rating system that is objective and easy to use. The constituents of RMR are decided to RQD, condition of discontinuities, groundwater conditions, intact rock strength, orientation of discontinuities, spacing of discontinuities in important order. In each step, we proposed the best multiple regression model for RMR system.

  • PDF

The Impact of Audit Characteristics on Firm Performance: An Empirical Study from an Emerging Economy

  • Rahman, Md. Musfiqur;Meah, Mohammad Rajon;Chaudhory, Nasir Uddin
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.6 no.1
    • /
    • pp.59-69
    • /
    • 2019
  • The auditor, an important instrument of corporate governance, ensures the transparency and accountability of the firm to the stakeholders. The objective of this paper is to explore the impact of audit characteristics on firm performance. In this study, external audit quality (BIG4), frequencies of audit committee meetings, and audit committee size are used as the proxies of audit characteristics and firm performance is measured through ROA, profit margin and EPS. A total of 503 firm years are considered as sample size from the listed manufacturing firms of Dhaka Stock Exchange (DSE) during the period of 2013 to 2017 to find out the impact of audit characteristics on firm performance. In this study, multivariate regression analysis is conducted using the pooled OLS method. Moreover, time dummy and lag model of multivariate analysis are also analyzed as robust check. The multivariate regression results find that external audit quality (BIG4) and audit committee size are significantly positively associated with firm performance. This study also finds that there is a significant negative relationship between audit committee meeting and firm performance. This study recommends that the regulatory authority and audit committee should review the frequencies of audit committee meeting to make it more effective to ensure better firm performance.

Penalized least distance estimator in the multivariate regression model (다변량 선형회귀모형의 벌점화 최소거리추정에 관한 연구)

  • Jungmin Shin;Jongkyeong Kang;Sungwan Bang
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • In many real-world data, multiple response variables are often dependent on the same set of explanatory variables. In particular, if several response variables are correlated with each other, simultaneous estimation considering the correlation between response variables might be more effective way than individual analysis by each response variable. In this multivariate regression analysis, least distance estimator (LDE) can estimate the regression coefficients simultaneously to minimize the distance between each training data and the estimates in a multidimensional Euclidean space. It provides a robustness for the outliers as well. In this paper, we examine the least distance estimation method in multivariate linear regression analysis, and furthermore, we present the penalized least distance estimator (PLDE) for efficient variable selection. The LDE technique applied with the adaptive group LASSO penalty term (AGLDE) is proposed in this study which can reflect the correlation between response variables in the model and can efficiently select variables according to the importance of explanatory variables. The validity of the proposed method was confirmed through simulations and real data analysis.

A study on applying multivariate statistical method for making casual structure in management information (경영정보의 인과구조 구축을 위한 다변량통계기법 적용에 관한 연구)

  • 조성훈;김태성
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.10a
    • /
    • pp.117-120
    • /
    • 1996
  • The objective of this study is to suggest modified Covariance Structure Analysis that combine with existing Multivariate Statistical Method which is used Casual Analysis Method in Management Information. For this purpose, we'll consider special feature and limitation about Correlation Analysis, Regression Analysis, Path Analysis and connect Covariance Structure Analysis with Statistical Factor Analysis so that theoretical casual model compare with variables structure in collecting data. A example is also presented to show the practical applicability of this approach.

  • PDF

A GEE approach for the semiparametric accelerated lifetime model with multivariate interval-censored data

  • Maru Kim;Sangbum Choi
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.389-402
    • /
    • 2023
  • Multivariate or clustered failure time data often occur in many medical, epidemiological, and socio-economic studies when survival data are collected from several research centers. If the data are periodically observed as in a longitudinal study, survival times are often subject to various types of interval-censoring, creating multivariate interval-censored data. Then, the event times of interest may be correlated among individuals who come from the same cluster. In this article, we propose a unified linear regression method for analyzing multivariate interval-censored data. We consider a semiparametric multivariate accelerated failure time model as a statistical analysis tool and develop a generalized Buckley-James method to make inferences by imputing interval-censored observations with their conditional mean values. Since the study population consists of several heterogeneous clusters, where the subjects in the same cluster may be related, we propose a generalized estimating equations approach to accommodate potential dependence in clusters. Our simulation results confirm that the proposed estimator is robust to misspecification of working covariance matrix and statistical efficiency can increase when the working covariance structure is close to the truth. The proposed method is applied to the dataset from a diabetic retinopathy study.

On a Bayesian Estimation of Multivariate Regression Models with Constrained Coefficient Matrix

  • Kim, Hea-Jung
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.4
    • /
    • pp.151-165
    • /
    • 1998
  • Consider the linear multivariate regression model $Y=X_1B_1+X_2B_2+U$, where Vec(U)~N(0, $\sum \bigotimes I_N$). This paper is concerned with Bayes infreence of the model when it is suspected that the elements of $B_2$ are constrained in the form of intervals. The use of the Gibbs sampler as a method for calculating Bayesian marginal posterior desnities of the parameters under a generalized conjugate prior is developed. It is shown that the a, pp.oach is straightforward to specify distributionally and to implement computationally, with output readily adopted for required inference summaries. The method developed is a, pp.ied to a real problem.

  • PDF

Bankruptcy Prediction using Support Vector Machines (Support Vector Machine을 이용한 기업부도예측)

  • Park, Jung-Min;Kim, Kyoung-Jae;Han, In-Goo
    • Asia pacific journal of information systems
    • /
    • v.15 no.2
    • /
    • pp.51-63
    • /
    • 2005
  • There has been substantial research into the bankruptcy prediction. Many researchers used the statistical method in the problem until the early 1980s. Since the late 1980s, Artificial Intelligence(AI) has been employed in bankruptcy prediction. And many studies have shown that artificial neural network(ANN) achieved better performance than traditional statistical methods. However, despite ANN's superior performance, it has some problems such as overfitting and poor explanatory power. To overcome these limitations, this paper suggests a relatively new machine learning technique, support vector machine(SVM), to bankruptcy prediction. SVM is simple enough to be analyzed mathematically, and leads to high performances in practical applications. The objective of this paper is to examine the feasibility of SVM in bankruptcy prediction by comparing it with ANN, logistic regression, and multivariate discriminant analysis. The experimental results show that SVM provides a promising alternative to bankruptcy prediction.

Leave-one-out Bayesian model averaging for probabilistic ensemble forecasting

  • Kim, Yongdai;Kim, Woosung;Ohn, Ilsang;Kim, Young-Oh
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.67-80
    • /
    • 2017
  • Over the last few decades, ensemble forecasts based on global climate models have become an important part of climate forecast due to the ability to reduce uncertainty in prediction. Moreover in ensemble forecast, assessing the prediction uncertainty is as important as estimating the optimal weights, and this is achieved through a probabilistic forecast which is based on the predictive distribution of future climate. The Bayesian model averaging has received much attention as a tool of probabilistic forecasting due to its simplicity and superior prediction. In this paper, we propose a new Bayesian model averaging method for probabilistic ensemble forecasting. The proposed method combines a deterministic ensemble forecast based on a multivariate regression approach with Bayesian model averaging. We demonstrate that the proposed method is better in prediction than the standard Bayesian model averaging approach by analyzing monthly average precipitations and temperatures for ten cities in Korea.

Effect of Dimension Reduction on Prediction Performance of Multivariate Nonlinear Time Series

  • Jeong, Jun-Yong;Kim, Jun-Seong;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.3
    • /
    • pp.312-317
    • /
    • 2015
  • The dynamic system approach in time series has been used in many real problems. Based on Taken's embedding theorem, we can build the predictive function where input is the time delay coordinates vector which consists of the lagged values of the observed series and output is the future values of the observed series. Although the time delay coordinates vector from multivariate time series brings more information than the one from univariate time series, it can exhibit statistical redundancy which disturbs the performance of the prediction function. We apply dimension reduction techniques to solve this problem and analyze the effect of this approach for prediction. Our experiment uses delayed Lorenz series; least squares support vector regression approximates the predictive function. The result shows that linearly preserving projection improves the prediction performance.