• Title/Summary/Keyword: Multivariate Geostatistics

Search Result 2, Processing Time 0.015 seconds

GEOSTATISTICAL INTEGRATION OF HIGH-RESOLUTION REMOTE SENSING DATA IN SPATIAL ESTIMATION OF GRAIN SIZE

  • Park, No-Wook;Chi, Kwang-Hoon;Jang, Dong-Ho
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.406-408
    • /
    • 2006
  • Various geological thematic maps such as grain size or ground water level maps have been generated by interpolating sparsely sampled ground survey data. When there are sampled data at a limited number of locations, to use secondary information which is correlated to primary variable can help us to estimate the attribute values of the primary variable at unsampled locations. This paper applies two multivariate geostatistical algorithms to integrate remote sensing imagery with sparsely sampled ground survey data for spatial estimation of grain size: simple kriging with local means and kriging with an external drift. High-resolution IKONOS imagery which is well correlated with the grain size is used as secondary information. The algorithms are evaluated from a case study with grain size observations measured at 53 locations in the Baramarae beach of Anmyeondo, Korea. Cross validation based on a one-leave-out approach is used to compare the estimation performance of the two multivariate geostatistical algorithms with that of traditional ordinary kriging.

  • PDF

Hydrogeochemical Characterization of Groundwater in Jeju Island using Principal Component Analysis and Geostatistics (주성분분석과 지구통계법을 이용한 제주도 지하수의 수리지화학 특성 연구)

  • Ko Kyung-Seok;Kim Yongie;Koh Dong-Chan;Lee Kwang-Sik;Lee Seung-Gu;Kang Cheol-Hee;Seong Hyun-Jeong;Park Won-Bae
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.435-450
    • /
    • 2005
  • The purpose of the study is to analyze the hydrogeochemical characteristics by multivariate statistical method, to interpret the hydrogeochemical processes for the new variables calculated from principal components analysis (PCA), and to infer the groundwater flow and circulation mechanism by applying the geostatistical methods for each element and principal component. Chloride and nitrate are the most influencing components for groundwater quality, and the contents of $NO_3$ increased by the input of agricultural activities show the largest variation. The results of PCA, a multivariate statistical method, show that the first three principal components explain $73.9\%$ of the total variance. PC1 indicates the increase of dissolved ions, PC2 is related with the dissolution of carbonate minerals and nitrate contamination, and PC3 shows the effect of cation exchange process and silicate mineral dissolution. From the results of experimental semivariogram, the components of groundwater are divided into two groups: one group includes electrical conductivity (EC), Cl, Na, and $NO_3$, and the other includes $HCO_3,\;SiO_2,$ Ca, and Sr. The results for spatial distribution of groundwater components showed that EC, Cl, and Na increased with approaching the coastal line and nitrate has close relationship with the presence of agricultural land. These components are also correlated with the topographic features reflecting the groundwater recharge effect. The kriging analysis by using principal components shows that PC 1 has the different spatial distribution of Cl, Na, and EC, possibly due to the influence of pH, Ca, Sr, and $HCO_3$ for PC1. It was considered that the linear anomaly zone of PC2 in western area was caused by the dissolution of carbonate mineral. Consequently, the application of multivariate and geostatistical methods for groundwater in the study area is very useful for determining the quantitative analysis of water quality data and the characteristics of spatial distribution.