• 제목/요약/키워드: Multivariate Bias Correction

검색결과 2건 처리시간 0.02초

Impact of Diverse Configuration in Multivariate Bias Correction Methods on Large-Scale Climate Variable Simulations under Climate Change

  • de Padua, Victor Mikael N.;Ahn Kuk-Hyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.161-161
    • /
    • 2023
  • Bias correction of values is a necessary step in downscaling coarse and systematically biased global climate models for use in local climate change impact studies. In addition to univariate bias correction methods, many multivariate methods which correct multiple variables jointly - each with their own mathematical designs - have been developed recently. While some literature have focused on the inter-comparison of these multivariate bias correction methods, none have focused extensively on the effect of diverse configurations (i.e., different combinations of input variables to be corrected) of climate variables, particularly high-dimensional ones, on the ability of the different methods to remove biases in uni- and multivariate statistics. This study evaluates the impact of three configurations (inter-variable, inter-spatial, and full dimensional dependence configurations) on four state-of-the-art multivariate bias correction methods in a national-scale domain over South Korea using a gridded approach. An inter-comparison framework evaluating the performance of the different combinations of configurations and bias correction methods in adjusting various climate variable statistics was created. Precipitation, maximum, and minimum temperatures were corrected across 306 high-resolution (0.2°) grid cells and were evaluated. Results show improvements in most methods in correcting various statistics when implementing high-dimensional configurations. However, some instabilities were observed, likely tied to the mathematical designs of the methods, informing that some multivariate bias correction methods are incompatible with high-dimensional configurations highlighting the potential for further improvements in the field, as well as the importance of proper selection of the correction method specific to the needs of the user.

  • PDF

전력수요예측을 위한 기상정보 활용성평가 (Evaluation of weather information for electricity demand forecasting)

  • 신이레;윤상후
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권6호
    • /
    • pp.1601-1607
    • /
    • 2016
  • 오늘날 기상정보는 도로공학, 경제학, 환경공학 등 다양한 분야에 활용되고 있다. 본 연구는 전력수요 예측을 위한 기상정보 활용성을 평가하고자 한다. 기상변수는 기상관측소에서 수집되는 기온, 풍속, 습도, 운량, 기압과 기온, 풍속, 상대습도의 합성지수인 체감온도와 불쾌지수가 고려되었다. 전력수요 예측을 위한 시계열모형으로 슬라이딩 창 방식의 TBATS 삼중지수평활모형이 고려되었다. 월 단위 기상변수와 전력수요 예측오차간 상관분석 결과를 보면 시간대별로 차이를 있으나 기온, 불쾌지수, 체감온도가 전력수요 예측오차와 상관성이 높았다. 이에 과거 3년의 월단위 전력수요 예측오차와 기상변수의 회귀모형식으로 전력수요 예측값의 편의를 보정하였다. 온도, 상대습도, 풍속으로 TBATS 모형의 전력수요 예측값을 보정한 결과 TBATS 모형에 비해 RMSE가 약 6.1% 줄었다.