• Title/Summary/Keyword: Multispectral object detection

Search Result 3, Processing Time 0.02 seconds

High-Frequency Interchange Network for Multispectral Object Detection (다중 스펙트럼 객체 감지를 위한 고주파 교환 네트워크)

  • Park, Seon-Hoo;Yun, Jun-Seok;Yoo, Seok Bong;Han, Seunghwoi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.8
    • /
    • pp.1121-1129
    • /
    • 2022
  • Object recognition is carried out using RGB images in various object recognition studies. However, RGB images in dark illumination environments or environments where target objects are occluded other objects cause poor object recognition performance. On the other hand, IR images provide strong object recognition performance in these environments because it detects infrared waves rather than visible illumination. In this paper, we propose an RGB-IR fusion model, high-frequency interchange network (HINet), which improves object recognition performance by combining only the strengths of RGB-IR image pairs. HINet connected two object detection models using a mutual high-frequency transfer (MHT) to interchange advantages between RGB-IR images. MHT converts each pair of RGB-IR images into a discrete cosine transform (DCT) spectrum domain to extract high-frequency information. The extracted high-frequency information is transmitted to each other's networks and utilized to improve object recognition performance. Experimental results show the superiority of the proposed network and present performance improvement of the multispectral object recognition task.

Development of Chinese Cabbage Detection Algorithm Based on Drone Multi-spectral Image and Computer Vision Techniques (드론 다중분광영상과 컴퓨터 비전 기술을 이용한 배추 객체 탐지 알고리즘 개발)

  • Ryu, Jae-Hyun;Han, Jung-Gon;Ahn, Ho-yong;Na, Sang-Il;Lee, Byungmo;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.535-543
    • /
    • 2022
  • A drone is used to diagnose crop growth and to provide information through images in the agriculture field. In the case of using high spatial resolution drone images, growth information for each object can be produced. However, accurate object detection is required and adjacent objects should be efficiently classified. The purpose of this study is to develop a Chinese cabbage object detection algorithm using multispectral reflectance images observed from drone and computer vision techniques. Drone images were captured between 7 and 15 days after planting a Chinese cabbage from 2018 to 2020 years. The thresholds of object detection algorithm were set based on 2019 year, and the algorithm was evaluated based on images in 2018 and 2019 years. The vegetation area was classified using the characteristics of spectral reflectance. Then, morphology techniques such as dilatation, erosion, and image segmentation by considering the size of the object were applied to improve the object detection accuracy in the vegetation area. The precision of the developed object detection algorithm was over 95.19%, and the recall and accuracy were over 95.4% and 93.68%, respectively. The F1-Score of the algorithm was over 0.967 for 2 years. The location information about the center of the Chinese cabbage object extracted using the developed algorithm will be used as data to provide decision-making information during the growing season of crops.

Unsupervised Change Detection Based on Sequential Spectral Change Vector Analysis for Updating Land Cover Map (토지피복지도 갱신을 위한 S2CVA 기반 무감독 변화탐지)

  • Park, Nyunghee;Kim, Donghak;Ahn, Jaeyoon;Choi, Jaewan;Park, Wanyong;Park, Hyunchun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1075-1087
    • /
    • 2017
  • In this study, we tried to utilize results of the change detection analysis for satellite images as the basis for updating the land cover map. The Sequential Spectral Change Vector Analysis ($S^2CVA$) was applied to multi-temporal multispectral satellite imagery in order to extract changed areas, efficiently. Especially, we minimized the false alarm rate of unsupervised change detection due to the seasonal variation using the direction information in $S^2CVA$. The binary image, which is the result of unsupervised change detection, was integrated with the existing land cover map using the zonal statistics. And then, object-based analysis was performed to determine the changed area. In the experiment using PlanetScope data and the land cover map of the Ministry of Environment, the change areas within the existing land cover map could be detected efficiently.