• Title/Summary/Keyword: Multispectral imaging

Search Result 49, Processing Time 0.028 seconds

Estimation of ambient PM10 and PM2.5 concentrations in Seoul, South Korea, using empirical models based on MODIS and Landsat 8 OLI imagery

  • Lee, Peter Sang-Hoon;Park, Jincheol;Seo, Jung-young
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.1
    • /
    • pp.59-66
    • /
    • 2020
  • Particulate matter (PM) is regarded as a major threat to public health and safety in urban areas. Despite a variety of efforts to systemically monitor the distribution of PM, the limited amount of sampling sites may not provide sufficient coverage over the areas where the monitoring stations are not located in close proximity. This study examined the capacity of using remotely sensed data to estimate the PM10 and PM2.5 concentrations in Seoul, South Korea. Multiple linear regression models were developed using the multispectral band data from the Moderate-resolution imaging spectro-radiometer equipped on Terra (MODIS) and Operational Land Imager equipped on Landsat 8 (Landsat 8) and meteorological parameters. Compared to MODIS-derived models (r2 = 0.25 for PM10, r2 = 0.30 for PM2.5), the Landsat 8-derived models showed improved model reliabilities (r2 = 0.17 to 0.57 for PM10, r2 = 0.47 to 0.71 for PM2.5). Landsat 8 model-derived PM concentration and ground-truth PM measurements were cross-validated to each other to examine the capability of the models for estimating the PM concentration. The modeled PM concentrations showed a stronger correlation to PM10 (r = 0.41 to 0.75) than to PM2.5 (r = 0.14 to 0.82). Overall, the results indicate that Landsat 8-derived models were more suitable in estimating the PM concentrations. Despite the day-to-day fluctuation in the model reliability, several models showed strong correspondences of the modeled PM concentrations to the PM measurements.

Qualification Test of ROCSAT -2 Image Processing System

  • Liu, Cynthia;Lin, Po-Ting;Chen, Hong-Yu;Lee, Yong-Yao;Kao, Ricky;Wu, An-Ming
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1197-1199
    • /
    • 2003
  • ROCSAT-2 mission is to daily image over Taiwan and the surrounding area for disaster monitoring, land use, and ocean surveillance during the 5-year mission lifetime. The satellite will be launched in December 2003 into its mission orbit, which is selected as a 14 rev/day repetitive Sun-synchronous orbit descending over (120 deg E, 24 deg N) and 9:45 a.m. over the equator with the minimum eccentricity. National Space Program Office (NSPO) is developing a ROCSAT-2 Image Processing System (IPS), which aims to provide real-time high quality image data for ROCSAT-2 mission. A simulated ROCSAT-2 image, based on Level 1B QuickBird Data, is generated for IPS verification. The test image is comprised of one panchromatic data and four multispectral data. The qualification process consists of four procedures: (a) QuickBird image processing, (b) generation of simulated ROCSAT-2 image in Generic Raw Level Data (GERALD) format, (c) ROCSAT-2 image processing, and (d) geometric error analysis. QuickBird standard photogrammetric parameters of a camera that models the imaging and optical system is used to calculate the latitude and longitude of each line and sample. The backward (inverse model) approach is applied to find the relationship between geodetic coordinate system (latitude, longitude) and image coordinate system (line, sample). The bilinear resampling method is used to generate the test image. Ground control points are used to evaluate the error for data processing. The data processing contains various coordinate system transformations using attitude quaternion and orbit elements. Through the qualification test process, it is verified that the IPS is capable of handling high-resolution image data with the accuracy of Level 2 processing within 500 m.

  • PDF

Generation of the Ortho-Rectified Photo Map and Analysis of the Three-Dimensional Image Using the PKNU 2 Imagery (PKNU2호 영상을 이용한 정사영상 지도 제작 및 3차원 입체 분석)

  • Lee, Chang Hun;Choi, Chul Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.7 no.4
    • /
    • pp.77-87
    • /
    • 2004
  • It is important for hydrographers to extract the accurate cross section of a river for the hydrographical analysis of the topography. Aerial photographs were used to extract the cross section of a river for the advantages of the accuracy and economical efficiency in this study, while the direct measurement has been used in existing studies. An ortho-rectified photo map using imageries taken by the PKNU 2 (High-resolution, multi-spectral, aerial photographic system developed by our laboratory) was generated using the surveyed data and a digital map. The cross section of a river that was obtained from the ortho-rectified by the surveyed Kinematic data of GPS was compared with the result using ImageStation stereo-plotter of corp. Z/I Imaging. As a result of this study, the RMSE in the ortho-rect process using the surveyed GPS data was lowered as from 5.5788 pixels (about 2m) to 2.84 (about 1m) in comparison with it in the process using a digital map. The surveyed kinematic GPS in extraction of the cross section of a river was excellent as 6.6cm of the planimetric and precision in the confidence level of 95%. The correlation coefficient between the result from the using stereo-plotter and the extraction of cross section of a river using aerial photos was 0.8 hydrographical acquisition of it using PKNU 2 imagery will be possible.

  • PDF

Noise Band Elemination of Hyperion Image using Fractal Dimension and Continuum Removal Method (프랙탈 차원 및 Continuum Removal 기법을 이용한 Hyperion 영상의 노이즈 밴드 제거)

  • Chang, An-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.125-131
    • /
    • 2008
  • Hyperspectral imaging is used in a wide variety of research since the image is obtained with a wider wavelength range and more bands than multispectral imaging. However, there are limitations, namely that each band has a shorter wavelength range, the computation cost is increased in the case of numerous bands, and a high correlation between each band and noise bands exists. The previous analysis method does not produce ideal results due to these limitations. Therefore, in the case of using the hyperspectral image, image analysis after eliminating noise bands is more accurate and efficient. In this study, noise band elimination of the hyperspectral image preprocessing is highlighted, and we use fractal dimension for noise band elimination. The Triangular Prism Method is used, being the typical fractal dimension method of the curved surface. The fractal dimension of each band is calculated. We then apply the Continuum Removal method to normalize. A total of 35 bands are estimated by noise band with a threshold value that is obtained empirically. The hyperion hyperstpectral image collected on the EO-1 satellite is used in this study. The result delineates that noise bands of the hyperion image are able to be eliminated with the fractal dimension and Continuum Removal method.

Compression of Multispectral Images (멀티 스펙트럴 영상들의 압축)

  • Enrico Piazza
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.28-39
    • /
    • 2003
  • This paper is an overview of research contributions by the authors to the use of compression techniques to handle high resolution, multi-spectral images. Originally developed in the remote sensing context, the same techniques are here applied to food and medical images. The objective is to point out the potential of this kind of processing in different contexts such as remote sensing, food monitoring, and medical imaging and to stimulate new research exploitations. Compression is based on the simple assumption that it is possible to find out a relationship between pixels close one each other in multi-spectral images it translates to the possibility to say that there is a certain degree of correlation within pixels belonging to the same band in a close neighbourhood. Once found a correlation based on certain coefficient on one band, the coefficients of this relationship are, in turn, quite probably, similar to the ones calculated in one of the other bands. Based upon this second observation, an algorithm was developed, able to reduce the number of bit/pixel from 16 to 4 in satellite remote sensed multi-spectral images. A comparison is carried out between different methods about their speed and compression ratio. As reference it was taken the behaviour of three common algorithms, LZW (Lempel-Ziv-Welch), Huffman and RLE (Run Length Encoding), as they are used in common graphic format such as GIF, JPEG and PCX. The Presented methods have similar results in both speed and compression ratio to the commonly used programs and are to be preferred when the decompression must be carried out on line, inside a main program or when there is the need of a custom made compression algorithm.

  • PDF

Spectral Reflectance Estimation based on Similar Training Set using Correlation Coefficient (상관 계수를 이용한 유사 모집단 기반의 분광 반사율 추정)

  • Yo, Ji-Hoon;Ha, Ho-Gun;Kim, Dae-Chul;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.142-149
    • /
    • 2013
  • In general, a color of an image is represented by using red, green, and blue channels in a RGB camera system. However, only information of three channels are limited to estimate a spectral reflectance of a real scene. Because of this, the RGB camera system can not accurately represent the color. To overcome this limitation and represent an accurate color, researches to estimate the spectral reflectance by using a multi-channel camera system are being actively proceeded. Recently, a reflectance estimation method adaptively constructing a similar training set from a traditional training set according to a camera response by using a spectral similarity was introduced. However, in this method, an accuracy of the similar training set is reduced because the spectral similarity based on an average and a maximum distances was applied. In this paper, a reflectance estimation method applied a spectral similarity based on a correlation coefficient is proposed to improve the accuracy of the similar training set. Firstly, the correlation coefficient between the similar training set and the spectral reflectance obtained by Wiener estimation method is calculated. Secondly, the similar training set is constructed from the traditional training set according to the correlation coefficient. Finally, Wiener estimation method applied the similar training set is performed to estimate the spectral reflectance. To evaluate a performance of the proposed method with previous methods, experimental results are compared. As a result, the proposed method showed the best performance.

Multi-spectral Flash Imaging using Region-based Weight Map (영역기반 가중치 맵을 이용한 멀티스팩트럼 플래시 영상 획득)

  • Choi, Bong-Seok;Kim, Dae-Chul;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.9
    • /
    • pp.127-135
    • /
    • 2013
  • In order to acquire images in low-light environments, it is usually necessary to adopt long exposure times or resort to flash lights. However, flashes often induce color distortion, cause the red-eye effect and can be disturbing to subjects. On the other hand, long-exposure shots are susceptible to subject-motion, as well as motion-blur due to camera shake when performed hand-held. A recently introduced technique to overcome the limitations of traditional low-light photography is that of multi-spectral flash. Multi-spectral flash images are a combination of UV/IR and visible spectrum information. The general idea is that of retrieving details from the UV/IR spectrum and color from the visible spectrum. However, multi-spectral flash images themselves are subject to color distortion and noise. This works presents a method to compute multi-spectral flash images so that noise can be reduced and color accuracy improved. The proposed approach is a previously seen optimization method, improved by the introduction of a weight map used to discriminate uniform regions from detail regions. The weight map is generated by applying canny edge operator and it is applied to the optimization process for discriminating the weights in uniform region and edge. Accordingly, the weight of color information is increased in the uniform region and the detail region of weight is decreased in detail region. Therefore, the proposed method can be enhancing color reproduction and removing artifacts. The performance of the proposed method has been objectively evaluated using long-exposure shots as reference.

Current Status of Hyperspectral Remote Sensing: Principle, Data Processing Techniques, and Applications (초분광 원격탐사의 특성, 처리기법 및 활용 현용)

  • Kim Sun-Hwa;Ma Jung-Rim;Kook Min-Jung;Lee Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.4
    • /
    • pp.341-369
    • /
    • 2005
  • Hyperspectral images have emerged as a new and promising remote sensing data that can overcome the limitations of existing optical image data. This study was designed to provide a comprehensive review on definition, data processing methods, and applications of hyperspectral data. Various types of airborne, spaceborne, and field hyperspectral image sensors were surveyed from the available literatures and internet search. To understand the current status of hyperspectral remote sensing technology and research development, we collected several hundreds research papers from international journals (IEEE Transactions on Geoscience and Remote Sensing, International Journal of Remote Sensing, Remote Sensing of Environment and AVIRIS Workshop Proceedings), and categorized them by sensor types, data processing techniques, and applications. Although several hyperspectral sensors have been developing, AVIRIS has been a primary data source that the most hyperspectral remote sensing researches were relied on. Since hyperspectral data have very large data volume with many spectral bands, several data processing techniques that are particularly oriented to hyperspectral data have been developed. Although atmospheric correction, spectral mixture analysis, and spectral feature extraction are among those processing techniques, they are still in experimental stage and need further refinement until the fully operational adaptation. Geology and mineral exploration were major application in early stage of hyperspectral sensing because of the distinct spectral features of rock and minerals that could be easily observed with hyperspectral data. The applications of hyperspectral sensing have been expanding to vegetation, water resources, and military areas where the multispectral sensing was not very effective to extract necessary information.

A study on the analysis of current status of Seonakdong River algae using hyperspectral imaging (초분광영상을 이용한 서낙동강 조류 발생현황 분석에 관한 연구)

  • Kim, Jongmin;Gwon, Yeonghwa;Park, Yelim;Kim, Dongsu;Kwon, Jae Hyun;Kim, Young Do
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.4
    • /
    • pp.301-308
    • /
    • 2022
  • Algae is an indispensable primary producer in the ecosystem by supplying energy to consumers in the aquatic ecosystem, and is largely divided into green algae, blue-green algae, and diatoms. In the case of blue-green algae, the water temperature rises, which occurs in the summer and overgrows, which is the main cause of the algae bloom. Recently, the change in the occurrence time and frequency of the algae bloom is increasing due to climate change. Existing algae survey methods are performed by collecting water and measuring through sensors, and time, cost and manpower are limited. In order to overcome the limitations of these existing monitoring methods, research has been conducted to perform remote monitoring using spectroscopic devices such as multispectral and hyperspectral using satellite image, UAV, etc. In this study, we tried to confirm the possibility of species classification of remote monitoring through laboratory-scale experiments through algal culture and river water collection. In order to acquire hyperspectral images, a hyperspectral sensor capable of analyzing at 400-1000 nm was used. In order to extract the spectral characteristics of the collected river water for classification of algae species, filtration was performed using a GF/C filter to prepare a sample and images were collected. Radiation correction and base removal of the collected images were performed, and spectral information for each sample was extracted and analyzed through the process of extracting spectral information of algae to identify and compare and analyze the spectral characteristics of algae, and remote sensing based on hyperspectral images in rivers and lakes. We tried to review the applicability of monitoring.