• Title/Summary/Keyword: Multispectral camera

Search Result 49, Processing Time 0.024 seconds

Comparative Analysis of Rice Lodging Area Using a UAV-based Multispectral Imagery (무인기 기반 다중분광 영상을 이용한 벼 쓰러짐 영역의 특성 분석)

  • Moon, Hyun-Dong;Ryu, Jae-Hyun;Na, Sang-il;Jang, Seon Woong;Sin, Seo-ho;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.917-926
    • /
    • 2021
  • Lodging rice is one of critical agro-meteorological disasters. In this study, the UAV-based multispectral imageries before and after rice lodging in rice paddy field of Jeollanamdo agricultural research and extension servicesin 2020 was analyzed. The UAV imagery on 14th Aug. includesthe paddy rice without any damage. However, 4th and 19th Sep. showed the area of rice lodging. Multispectral camera of 10 bands from 444 nm to 842 nm was used. At the area of restoration work against lodging rice, the reflectance from 531 nm to 842 nm were decreased in comparison to un-lodging rice. At the area of lodging rice, the reflectance of around 668 nm had small increases. Further, the blue and NIR (Near-Infrared) wavelength had larger. However, according to the types of lodging, the change of reflectance was different. The NDVI (Normalized Difference Vegetation Index) and NDRE (Normalized Difference Red Edge) shows dome sensitivities to lodging rice, but they were different to types of lodging. These results will be useful to make algorithm to detect the area of lodging rice using a UAV.

Analysis of UAV-based Multispectral Reflectance Variability for Agriculture Monitoring (농업관측을 위한 다중분광 무인기 반사율 변동성 분석)

  • Ahn, Ho-yong;Na, Sang-il;Park, Chan-won;Hong, Suk-young;So, Kyu-ho;Lee, Kyung-do
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1379-1391
    • /
    • 2020
  • UAV in the agricultural application are capable of collecting ultra-high resolution image. It is possible to obtain timeliness images for phenological phases of the crop. However, the UAV uses a variety of sensors and multi-temporal images according to the environment. Therefore, it is essential to use normalized image data for time series image application for crop monitoring. This study analyzed the variability of UAV reflectance and vegetation index according to Aviation Image Making Environment to utilize the UAV multispectral image for agricultural monitoring time series. The variability of the reflectance according to environmental factors such as altitude, direction, time, and cloud was very large, ranging from 8% to 11%, but the vegetation index variability was stable, ranging from 1% to 5%. This phenomenon is believed to have various causes such as the characteristics of the UAV multispectral sensor and the normalization of the post-processing program. In order to utilize the time series of unmanned aerial vehicles, it is recommended to use the same ratio function as the vegetation index, and it is recommended to minimize the variability of time series images by setting the same time, altitude and direction as possible.

Evaluation of Rededge-M Camera for Water Color Observation after Image Preprocessing (영상 전처리 수행을 통한 Rededge-M 카메라의 수색 관측에의 활용성 검토)

  • Kim, Wonkook;Roh, Sang-Hyun;Moon, Yongseon;Jung, Sunghun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.3
    • /
    • pp.167-175
    • /
    • 2019
  • Water color analysis allows non-destructive estimation of abundance of optically active water constituents in the water body. Recently, there have been increasing needs for light-weighted multispectral cameras that can be integrated with low altitude unmanned platforms such as drones, autonomous vehicles, and heli-kites, for the water color analysis by spectroradiometers. This study performs the preprocessing of the Micasense Rededge-M camera which recently receives a growing attention from the earth observation community for its handiness and applicability for local environment monitoring, and investigates the applicability of Rededge-M data for water color analysis. The Vignette correction and the band alignment were conducted for the radiometric image data from Rededge-M, and the sky, water, and solar radiation essential for the water color analysis, and the resultant remote sensing reflectance were validated with an independent hyperspectral instrument, TriOS RAMSES. The experiment shows that Rededge-M generally satisfies the basic performance criteria for water color analysis, although noticeable differences are observed in the blue (475 nm) and the near-infrared (840 nm) band compared with RAMSES.

Calculating Total Radiances of KOMPSAT-2 MSC (다목적실용위성 2호 MSC 총복사량을 계산하며)

  • 김용승;강치호
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.85-90
    • /
    • 2001
  • 대기복사모델인 MODRAN를 이용해 다목적실용위성 2호 탑재체인 Multispectral Camera (MSC)의 총복사량에 대한 계산을 수행하고 그 결과를 분석해 보았다. 모델계산은 4계절 조건을 모의실험하기 위해 1월 15일, 4월 15일, 7월 15일과 10월 15일에 대해 중위고 동절기 및 하절기, 그리고 US 표준대기를 사용했다. 다목적실용위성 2호 궤도 조건과 각 계절에 대한 대표적인 태양천정각 (solar zenith angle)을 이용하였다. 사정거리는 대류권 에어로솔 소광계수 (tropospheric aerosol extinction)에 해당하는 50 km를 사용하고 지표의 알비도는 맑은 날 지구 연평균 값에 해당하는 0.135가 사용되었다. 위 4개월 평균치로써 연평균 총복사량은 MSC 계약서에 명시된 값들과 상당한 차이를 보였고 심지어 파장에 따른 경향조차도 서로 다름을 알 수 있었다. 가시광선 대역에서 근적외선 대역으로 파장이 증가함에 따라 두 값의 차이가 커짐을 보였다.

  • PDF

TELEMETRY TIMING ANALYSIS FOR IMAGE RECONSTRUCTION OF KOMPSAT SPACECRAFT

  • Lee, Jin-Ho;Chang, Young-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.1
    • /
    • pp.117-122
    • /
    • 2000
  • The KOMPSAT(Korea Multi-Purpose SATellite) has two optical imaging instruments called EOC(Electro-Optical Camera) and OSMI (Ocean Scanning Multispectral Imager). The image data of these instruments are transmitted to ground station and restored correctly after post-processing with the telemetry data transfeered from KOMPSAT spacecraft. The major timing information of the KOMPSAT is OBT (On-Board Time) which is formatted by the on-board computer of the spacecraft, based on 1Hz sync. pulse coming from the GPS receiver involved. The OBT is transmitted to ground station with the house-keeping telemetry data of the spacecraft while it is distributed to the instruments via 1553B data bus for synchronization during imaging and formatting. The timing information contained in the spacecraft telemetry data would have direct relation to the image data of the instruments, which should be well explained to get a more accurate image. This paper addresses the timing analysis of the KOMPSAT spacecraft and instruments, including the gyro data timing analysis for the correct restoration of the EOC and OSMI image data at ground station.

  • PDF

An Experimental Study on the Image-Based Atmospheric Correction Using Multispectral Data

  • Lee Kwang-Jae;Kim Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.196-200
    • /
    • 2004
  • The purpose of this study is to examine the image­based atmospheric correction models using the data from Landsat Enhanced Thermal Mapper Plus (ETM+) that have quite similar spectral characteristics to the forthcoming Korea Multi-Purpose SATellite (KOMPSAT)-2 Multi-Spectral Camera (MSC), and the in-situ measured surface reflectance data during satellite overflight. The main advantage of this type of correction is that it does not require in-situ measurements during each satellite overflight. While substantial differences are present between Top-Of-the Atmosphere (TOA) reflectance and in-situ measurements, the results showed that Case 1 based on COST model gives most accurate results among three cases. The accuracy of Case 2 is very close to Case 1 and its values are smaller than in-situ data. No notable features appear between some bands in the Case 3 and in-situ data. It is expected from this study that if the current methods are applied to the IKONOS high resolution data, we will be able to develop the suitable atmospheric correction methods for MSC data.

  • PDF

Simulation of Remote Sensing Reflectance and Ocean Color Algorithms for High Resolution Ocean Sensor

  • Ahn, Yu-Hwan;Shanmugam, P.;Moon, Jeong-Eon
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.103-106
    • /
    • 2003
  • Retrieval of ocean color information from Multispectral Camera (MSC) on KOMPSAT-2 was investigated to study and characterize small-scale biophysical features in the coastal oceans. Prior to the derivation of such information from space-acquired ocean color imageries, the atmospheric effects largely from path and the air-sea interface should be removed from the total signal recorded at the top of the atmosphere (T$_{TOA}$). In this study, the 'path-extraction' is introduced and demonstrated on the TM and SeaWiFS imageries of highly turbid coastal waters of Korea. The algorithms for retrieval of ocean color information were explored from the remote reflectance (R$_{rs}$) in the visible wavebands of MSC. The determination of coefficient (R$^{2}$) for log-transformed data [ N = 500] was 0.90. Similarly, the R$^{2}$ value for log-transformed data [ N = 500] was found to be 0.93.

  • PDF

Optical Systems of the High-resolution Cameras for the KOMPSAT Payloads (다목적실용위성탑재 고해상도 카메라의 광학계 개발)

  • 이승훈;백홍열
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.36-37
    • /
    • 2000
  • 정밀 지상관측 위성인 다목적실용위성 1호기에는 해상도 6.6 m인 전자광학카메라(EOC)가 탑재되어 현재 우수한 영상을 보내오고 있으며 2003년 발사예정인 2호기를 위하여 해상도 1 m의 Multispectral Camera(MSC)가 개발중이다. 미 TRW 사가 제작한 EOC 개발에 항우연의 연구진은 그 설계 및 시험의 각 단계별 검토와, 탑재, 위성전체 시험과 보정을 포함한 궤도운용 등의 수행과 함께, 개발기간 동안 현지에서 수행된 별도의 현장교육을 통하여 동급의 위성카메라를 실제 개발할 수 있는 설계기술을 이전받았다. 수차례 대구경 비구면 광학계 제작 경험을 더한 항우연은 MSC 공동개발선인 이스라엘 ELOP 사와 현재 그 설계를 진행하고 있다. (중략)

  • PDF

Study on the Method of Diagnosing the Individuals Crop Growth Using by Multi-Spectral Images

  • Dongwon Kwon;Jaekyeong Baek;Wangyu Sang;Sungyul Chang;Jung-Il Cho;Ho-young Ban;HyeokJin Bak
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.108-108
    • /
    • 2022
  • In this study, multispectral images of wheat according to soil water state were collected, compared, and analyzed to measure the physiological response of crops to environmental stress at the individual level. CMS-V multi-spectral camera(Silios Technologies) was used for image acquisition. The camera lens consists of eight spectral bands between 550nm and 830nm. Light Reflective information collected in each band sensor and stored in digital values, and it is converted into a reflectance for calculating the vegetation index and used. According to the camera manual, the NDVI(Normalized Difference vegetation index) value was calculated using 628 nm and 752 nm bands. Image measurement was conducted under natural light conditions, and reflectance standards(Labsphere) were captured with plants for reflectance calculation. The wheat variety used Gosomil, and the wheat grown in the field was transplanted into a pot after heading date and measured. Three treatments were performed so that the soil volumetric water content of the pot was 13~17%, 20~23%, and 25%, and the growth response of wheat according to each treatment was compared using the NDVI value. In the first measurement after port transplantation, the difference in NDVI value according to treatment was not significant, but in the subsequent measurement, the NDVI value of the treatment with a water content of 13 to 17% was lowest and was the highest at 20 to 23%. The NDVI values decreased compared to the first measurement in all treatment, and the decrease was the largest at 13-17% water content and the smallest at 20-23%. Although the difference in NDVI values could be confirmed, it would be difficult to directly relate it to the water stress of plants, and further research on the response of crops to environmental stress and the analysis of multi-spectral image will be needed.

  • PDF

Land Cover Classification of High-Spatial Resolution Imagery using Fixed-Wing UAV (고정익 UAV를 이용한 고해상도 영상의 토지피복분류)

  • Yang, Sung-Ryong;Lee, Hak-Sool
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.501-509
    • /
    • 2018
  • Purpose: UAV-based photo measurements are being researched using UAVs in the space information field as they are not only cost-effective compared to conventional aerial imaging but also easy to obtain high-resolution data on desired time and location. In this study, the UAV-based high-resolution images were used to perform the land cover classification. Method: RGB cameras were used to obtain high-resolution images, and in addition, multi-distribution cameras were used to photograph the same regions in order to accurately classify the feeding areas. Finally, Land cover classification was carried out for a total of seven classes using created ortho image by RGB and multispectral camera, DSM(Digital Surface Model), NDVI(Normalized Difference Vegetation Index), GLCM(Gray-Level Co-occurrence Matrix) using RF (Random Forest), a representative supervisory classification system. Results: To assess the accuracy of the classification, an accuracy assessment based on the error matrix was conducted, and the accuracy assessment results were verified that the proposed method could effectively classify classes in the region by comparing with the supervisory results using RGB images only. Conclusion: In case of adding orthoimage, multispectral image, NDVI and GLCM proposed in this study, accuracy was higher than that of conventional orthoimage. Future research will attempt to improve classification accuracy through the development of additional input data.