• Title/Summary/Keyword: Multispectral Satellite Image

Search Result 106, Processing Time 0.028 seconds

Image Fusion Methods for Multispectral and Panchromatic Images of Pleiades and KOMPSAT 3 Satellites

  • Kim, Yeji;Choi, Jaewan;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.413-422
    • /
    • 2018
  • Many applications using satellite data from high-resolution multispectral sensors require an image fusion step, known as pansharpening, before processing and analyzing the multispectral images when spatial fidelity is crucial. Image fusion methods are to improve images with higher spatial and spectral resolutions by reducing spectral distortion, which occurs on image fusion processing. The image fusion methods can be classified into MRA (Multi-Resolution Analysis) and CSA (Component Substitution Analysis) approaches. To suggest the efficient image fusion method for Pleiades and KOMPSAT (Korea Multi-Purpose Satellite) 3 satellites, this study will evaluate image fusion methods for multispectral and panchromatic images. HPF (High-Pass Filtering), SFIM (Smoothing Filter-based Intensity Modulation), GS (Gram Schmidt), and GSA (Adoptive GS) were selected for MRA and CSA based image fusion methods and applied on multispectral and panchromatic images. Their performances were evaluated using visual and quality index analysis. HPF and SFIM fusion results presented low performance of spatial details. GS and GSA fusion results had enhanced spatial information closer to panchromatic images, but GS produced more spectral distortions on urban structures. This study presented that GSA was effective to improve spatial resolution of multispectral images from Pleiades 1A and KOMPSAT 3.

Generalized IHS-Based Satellite Imagery Fusion Using Spectral Response Functions

  • Kim, Yong-Hyun;Eo, Yang-Dam;Kim, Youn-Soo;Kim, Yong-Il
    • ETRI Journal
    • /
    • v.33 no.4
    • /
    • pp.497-505
    • /
    • 2011
  • Image fusion is a technical method to integrate the spatial details of the high-resolution panchromatic (HRP) image and the spectral information of low-resolution multispectral (LRM) images to produce high-resolution multispectral images. The most important point in image fusion is enhancing the spatial details of the HRP image and simultaneously maintaining the spectral information of the LRM images. This implies that the physical characteristics of a satellite sensor should be considered in the fusion process. Also, to fuse massive satellite images, the fusion method should have low computation costs. In this paper, we propose a fast and efficient satellite image fusion method. The proposed method uses the spectral response functions of a satellite sensor; thus, it rationally reflects the physical characteristics of the satellite sensor to the fused image. As a result, the proposed method provides high-quality fused images in terms of spectral and spatial evaluations. The experimental results of IKONOS images indicate that the proposed method outperforms the intensity-hue-saturation and wavelet-based methods.

TEXTURE ANALYSIS, IMAGE FUSION AND KOMPSAT-1

  • Kressler, F.P.;Kim, Y.S.;Steinnocher, K.T.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.792-797
    • /
    • 2002
  • In the following paper two algorithms, suitable for the analysis of panchromatic data as provided by KOMPSAT-1 will be presented. One is a texture analysis which will be used to create a settlement mask based on the variations of gray values. The other is a fusion algorithm which allows the combination of high resolution panchromatic data with medium resolution multispectral data. The procedure developed for this purpose uses the spatial information present in the high resolution image to spatially enhance the low resolution image, while keeping the distortion of the multispectral information to a minimum. This makes it possible to use the fusion results for standard multispecatral classification routines. The procedures presented here can be automated to large extent, making them suitable for a standard processing routine of satellite data.

  • PDF

Multispectral image data compression using classified vector quantization (영역분류 벡터 양자화를 이용한 다중분광 화상데이타 압축)

  • 김영춘;반성원;김중곤;서용수;이건일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.8
    • /
    • pp.42-49
    • /
    • 1996
  • In this paper, we propose a satellite multispectral image data compression method using classified vector quantization. This method classifies each pixel vector considering band characteristics of multispectral images. For each class, we perform both intraband and interband vector quantization to romove spatial and spectral redundancy, respectively. And residual vector quantization for error images is performed to reduce error of interband vector quantization. Thus, this method improves compression efficiency because of removing both intraband(spatial) and interband (spectral) redundancy in multispectral images, effectively. Experiments on landsat TM multispectral image show that compression efficiency of proposed method is better than that of conventional method.

  • PDF

A Wavelet-Domain IKONOS Satellite Image Fusion Algorithm Considering the Spectrum Range of Multispectral Images (다중분광 영상의 색상별 스펙트럼 영역을 고려한 웨이블릿 변역 IKONOS 위성영상 융합 알고리즘)

  • Lee, Young-Gun;Kuk, Jung-Gap;Cho, Nam-Ik
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.14-22
    • /
    • 2011
  • The conventional satellite image fusion methods usually add the same amount of higher frequency components extracted from the panchromatic image to all the multispectral images. However, it is noted that each of multispectral images has different amount of overlap with the panchromatic image in terms of its spectrum, and also has different intensities. Thus giving the same amount of high frequency contents to all the spectral bands does not match with this observation, which causes color distortion in the fused image. In this paper, we propose a new wavelet-domain satellite image fusion algorithm that can compensate for these differences in intensity and spectrum overlap. For the compensation of intensity differences, we first estimate the high resolution multispectral images from P, considering the relative intensity ratios. For the compensation of the amount of spectral overlap, their wavelet coefficients are appended to the conventional wavelet-domain method where the coefficients for the addition is determined by the amount of spectrum overlap. Experiments are conducted for the IKONOS satellite images whose spectrums are well known, and the results show that the proposed algorithm gives higher PSNR and correlation coefficients compared to the conventional methods.

Performance Evaluation of Pansharpening Algorithms for WorldView-3 Satellite Imagery

  • Kim, Gu Hyeok;Park, Nyung Hee;Choi, Seok Keun;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.4
    • /
    • pp.413-423
    • /
    • 2016
  • Worldview-3 satellite sensor provides panchromatic image with high-spatial resolution and 8-band multispectral images. Therefore, an image-sharpening technique, which sharpens the spatial resolution of multispectral images by using high-spatial resolution panchromatic images, is essential for various applications of Worldview-3 images based on image interpretation and processing. The existing pansharpening algorithms tend to tradeoff between spectral distortion and spatial enhancement. In this study, we applied six pansharpening algorithms to Worldview-3 satellite imagery and assessed the quality of pansharpened images qualitatively and quantitatively. We also analyzed the effects of time lag for each multispectral band during the pansharpening process. Quantitative assessment of pansharpened images was performed by comparing ERGAS (Erreur Relative Globale Adimensionnelle de Synthèse), SAM (Spectral Angle Mapper), Q-index and sCC (spatial Correlation Coefficient) based on real data set. In experiment, quantitative results obtained by MRA (Multi-Resolution Analysis)-based algorithm were better than those by the CS (Component Substitution)-based algorithm. Nevertheless, qualitative quality of spectral information was similar to each other. In addition, images obtained by the CS-based algorithm and by division of two multispectral sensors were shaper in terms of spatial quality than those obtained by the other pansharpening algorithm. Therefore, there is a need to determine a pansharpening method for Worldview-3 images for application to remote sensing data, such as spectral and spatial information-based applications.

Spectral Quality Enhancement of Pan-Sharpened Satellite Image by Using Modified Induction Technique (수정된 영상 유도 기법을 통한 융합영상의 분광정보 향상 알고리즘)

  • Choi, Jae-Wan;Kim, Hyung-Tae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.3
    • /
    • pp.15-20
    • /
    • 2008
  • High-spatial resolution remote sensing satellites (IKONOS-2, QuickBird and KOMPSAT-2) have provided low-spatial resolution multispectral images and high-spatial resolution panchromatic images. Image fusion or Pan-sharpening is a very important in that it aims at using a satellite image with various applications such as visualization and feature extraction through combining images that have a different spectral and spatial resolution. Many image fusion algorithms are proposed, most methods could not preserve the spectral information of original multispectral image after image fusion. In order to solve this problem, modified induction technique which reduce the spectral distortion of fused image is developed. The spectral distortion is adjusted by the comparison between the spatially degraded pan-sharpened image and original multispectral image and our algorithm is evaluated by QuickBird satellite imagery. In the experiment, pan-sharpened image by various methods can reduce spectral distortion when our algorithm is applied to the fused images.

  • PDF

Image Restoration and Segmentation for PAN-sharpened High Multispectral Imagery (PAN-SHARPENED 고해상도 다중 분광 자료의 영상 복원과 분할)

  • Lee, Sanghoon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.1003-1017
    • /
    • 2017
  • Multispectral image data of high spatial resolution is required to obtain correct information on the ground surface. The multispectral image data has lower resolution compared to panchromatic data. PAN-sharpening fusion technique produces the multispectral data with higher resolution of panchromatic image. Recently the object-based approach is more applied to the high spatial resolution data than the conventional pixel-based one. For the object-based image analysis, it is necessary to perform image segmentation that produces the objects of pixel group. Image segmentation can be effectively achieved by the process merging step-by-step two neighboring regions in RAG (Regional Adjacency Graph). In the satellite remote sensing, the operational environment of the satellite sensor causes image degradation during the image acquisition. This degradation increases variation of pixel values in same area, and results in deteriorating the accuracy of image segmentation. An iterative approach that reduces the difference of pixel values in two neighboring pixels of same area is employed to alleviate variation of pixel values in same area. The size of segmented regions is associated with the quality of image segmentation and is decided by a stopping rue in the merging process. In this study, the image restoration and segmentation was quantitatively evaluated using simulation data and was also applied to the three PAN-sharpened multispectral images of high resolution: Dubaisat-2 data of 1m panchromatic resolution from LA, USA and KOMPSAT3 data of 0.7m panchromatic resolution from Daejeon and Chungcheongnam-do in the Korean peninsula. The experimental results imply that the proposed method can improve analytical accuracy in the application of remote sensing high resolution PAN-sharpened multispectral imagery.

New Compression Scheme for Multispectral Images

  • Park, Jeong-Ho;Yun, Young-Bo;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.565-568
    • /
    • 1998
  • In this paper, we propose a new method for multispectral image compression that is based on highly correlated relational properly taken from a spatial image and its wavelet transform. The highly active regions, such as edges or contour, in the spatial domain are appeared as significant coefficients in the wavelet transform domain; and the low active regions like background as insignificant. These characteristics play an important role in designing the system. The simulation results have shown us that the proposed method has better performance in terms of the reconstructed image quality and the transmitted bit rakes. Practically, our system can be successfully applied to the application areas that require of progressive transmission. For some multispectral images with relatively low activity, we have obtained the more good results.

  • PDF

Multispectral image data compression using wavelet transfrom and selective predicted vector quantization (웨이브릿 변환 및 선택적 예측 벡터 양자화를 이용한 다분광 화상데이타 압축)

  • 김병주;반성원;김경규;정원식;김영춘;이건일
    • Proceedings of the IEEK Conference
    • /
    • 1998.06a
    • /
    • pp.673-676
    • /
    • 1998
  • Future land remote sensing satellite systems will kikely be constrained in terms of communication band-width. To alleviate this limitation, the data must be compressed. Image data obtained from satellite exhibit a high degree of spatial and spectral correlations that must be properly exploited. In this paper we propose multispectral image data compression using wavelet transform and selective predicted vector quantization. Th eproposed method is based on accuratly predicting other band from reference band and reducing bit rate through threshold map. we can achieve better compression effeciency than conventional methods.

  • PDF