• Title/Summary/Keyword: Multiresolution snake

Search Result 2, Processing Time 0.016 seconds

Automatic Boundary Detection of Carotid Intima-Media based on Multiresolution Snake (다해상도 스네이크를 통한 경동맥 내막-중막 경계선 자동추출)

  • Lee, Yu-Bu;Choi, Yoo-Joo;Kim, Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.14A no.2
    • /
    • pp.77-84
    • /
    • 2007
  • The intima media thickness(IMT) of the carotid artery from B mode ultrasound images has recently been proposed as the most useful index of individual atherosclerosis and can be used to predict major cardiovascular events. Ultrasonic measurements of the IMT are conventionally obtained by manually tracing interfaces between tissue layers. The drawbacks of this method are the inter and intra observer variability and its inefficiency. In this paper, we present a multiresolution snake method combined with the dynamic programming, which overcomes the various noises and sensitivity to initialization of conventional snake. First, an image pyramid is constructed using the Gaussian pyramid that maintains global edge information with smoothing in the images, and then the boundaries are automatically detected in the lowest resolution level by minimizing a cost function based on dynamic programming. The cost function includes cost terms which are representing image features and geometrical continuity of the vessel interfaces. Since the detected boundaries are selected as initial contour of the snake for the next level, this automated approach solves the problem of the initialization. Moreover, the proposed snake improves the problem of converging th the local minima by defining the external energy based on multiple image features. In this paper, our method has been validated by computing the correlation between manual and automatic measurements. This automated detection method has obtained more accurate and reproducible results than conventional edge detection by considering multiple image features.

Human Iris Recognition using Wavelet Transform and Neural Network

  • Cho, Seong-Won;Kim, Jae-Min;Won, Jung-Woo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.178-186
    • /
    • 2003
  • Recently, many researchers have been interested in biometric systems such as fingerprint, handwriting, key-stroke patterns and human iris. From the viewpoint of reliability and robustness, iris recognition is the most attractive biometric system. Moreover, the iris recognition system is a comfortable biometric system, since the video image of an eye can be taken at a distance. In this paper, we discuss human iris recognition, which is based on accurate iris localization, robust feature extraction, and Neural Network classification. The iris region is accurately localized in the eye image using a multiresolution active snake model. For the feature representation, the localized iris image is decomposed using wavelet transform based on dyadic Haar wavelet. Experimental results show the usefulness of wavelet transform in comparison to conventional Gabor transform. In addition, we present a new method for setting initial weight vectors in competitive learning. The proposed initialization method yields better accuracy than the conventional method.