• Title/Summary/Keyword: Multipurpose water

Search Result 176, Processing Time 0.027 seconds

Monthly Oerating Rules Considering Reliability Levels for Multipurpose Reservoir Systems (신뢰도를 고려한 다목적 저수지의 월별 운영율)

  • Lee, Hui-Seong;Sim, Sun-Bo;Go, Seok-Gu
    • Water for future
    • /
    • v.25 no.1
    • /
    • pp.75-82
    • /
    • 1992
  • This paper presents a methodology of developing reservoir operating rules which can consider the reliability levels incorporated with the discharge policy. The operating rules were derived based on the regression and risk analysis of the optimally operated results by using the long term historical and generated reservoir inflows. The methodology was applied to the operation of the Chungju reservoir system which is consisted of two reservoirs and powerplants, and monthly operation rules were developed. Simulations were performed by using the developed operating rules can not only significantly improve the output from the existing system but also improve the reliability incorporated with the output.

  • PDF

A Study for the Calculation of Instream Flow in the Rehabilitation of Urban stream (도심하천 복원에 따른 하천유지유량 산정 연구)

  • Choi, Gye Woon;Chang, Yun Gyu;Han, Man Sin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.448-452
    • /
    • 2004
  • Instream flow is necessary to manage the basic function of the rivers. The evaluation method of instream flow in a big river has been studied widely. However, the study in a urban hasn't researched. In theses days the environmental function of a river becomes very important. The evaluation method and secure of instream flow are basic conditions to perform it. Especially view of stream, recreation, protection of ecology are highly demanded In a urban according to the multipurpose of river spaces. In this paper the evaluation methods of instream flow were compared and investigated with many papers. This paper presents a proper evaluation procedure of instream flow in a urban stream through comparison and examination. According to the demanded hydraulic conditions the method can be considered the environmental function depend on the purpose of river restoration. The relationship of the coefficient of roughness and the slope of the river bed were examinated in order to estimate the minimum instream flow corresponding to proper Hydraulic conditions. Also calculate the instream flow of Sueng-gi stream in In-cheon.

  • PDF

Development of Optimal Operation Rule for Multipurpose Reservoirs System (다목적댐의 연계운영을 위한 최적 운영률 개발)

  • Yi, Jae-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.6
    • /
    • pp.487-497
    • /
    • 2004
  • Adding important new projects such as reservoirs which regulate a river discharge to a river system, existing operation methods should be changed considering these conditions. Since an original operation rule used for an existing system has been designed to be compatible to inputs and outputs of the existing system, the operation rule should be changed to consider the new projects. In this study, the technique of constructing new operation rules considering objectives of both old and new projects is suggested when new project is added to the river system. Reservoir operation rule using both stochastic inflow and optimization technique is developed. As a result of applying the technique to Geum river basin, the efficiency of the technique is verified.

Effects on Conservation and Flood Control Systems According In Normal Water Level Change from Daechung Multi-Purpose Reservoir (대청 다목적댐의 상시만수위 변경에 따른 이수 및 치수 영향 검토)

  • Yi, Jae-Eung;Kwon, Dong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.1-10
    • /
    • 2007
  • Reallocation procedure of multipurpose reservoir storage capacity between flood control and conservation is presented as an alternative to secure more water resources. Storage reallocation is an adaptive management mechanism for converting existing normal pool level of reservoirs to more beneficial uses without requirement for physical alteration. This study is intended to develop a reservoir storage reallocation methodology that allows increased water supply storage without minimizing adverse impacts on flood control. The methodology consists of flood control reservoir simulation for inflows with various return periods, flow routing from reservoir to a potential damage site, analyzing river carrying capacity, and reservoir yields estimation for reallocated storages. For the flood control model, a simulation model called Rigid ROM(Reservoir Operation Method) and HEC-5 are used. The approach is illustrated by applying it to two reservoirs system in Geum River basin. Especially with and without new project conditions are considered to analyze trade-offs between competing objectives.

Assessment of different pretreatments to breakage dormancy and improve the seed germination in Elaeocarpus serratus L. - an underutilized multipurpose fruit tree from South India

  • Raji, R.;Siril, E.A.
    • Forest Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.160-168
    • /
    • 2018
  • The seeds of Elaeocarpus serratus, a tropical underutilized fruit tree are characterized by hard seed coat and consequent poor water uptake and low germination. To improve the regeneration through seeds, various parameters such as viability of seeds, water uptake, and effect of seed mass on germination and pretreatments were performed using a completely randomized design (CRD). Tetrazolium (TZ) test was conducted using fresh, mature seeds revealed $50{\pm}2.56%$ mean viability. Seeds of different weight classes showed similar pattern of water uptake and the saturation level was achieved at 60 hrs of soaking. Seeds belong to weight class 2.6-3.5g were germinated ($12.5{\pm}1.26%$) with $175{\pm}1.75days$ (d) of mean time taken for germination (MTG). Germination capacity of seeds varied significantly among different populations and Varkala population gave $12.5{\pm}1.1%$ germination with $174.6{\pm}2.5d$ MTG. Among various seed treatments, mechanical scarification was superior in germination and significant reduction in MTG ($p{\leq}0.05$). The mechanical scarification by complete removal of seed coat resulted in $49.2{\pm}1.52%$ germination within a short period of time ($9.52{\pm}0.89d$ MTG). However, the complete removal of seed coat without damaging to embryo is a difficult task. An alternate treatment (Mechanical scarification II) by making cracks on nut faces vertically followed by soaking in distilled water for 24 hrs gave $48.4{\pm}1.73%$ germination with significantly reduced MTG ($12.14{\pm}0.56d$) over unsoaked, untreated control ($6.5{\pm}1.84%$ germination and $197.18{\pm}1.79d$ MTG; $p{\leq}0.05$). This treatment (Mechanical scarification II) is therefore recommended for E. serratus seeds as it can adopt easily and can achieve 7 fold increases in germination over control. The recorded germination through mechanical scarification is in tune with realized viability percentage of the seeds.

Effects of Spray Times and Ventilation Method on the Seedling Growth of Fruit Vegetables (관수회수 및 송풍처리가 과채류의 묘 생장에 미치는 영향)

  • Kim Chang-Soo;Min Byeong-Ro;Kim Wong;Kim Dong-Woo;Seo Kwang-Wook;Lee Beom-Seon;Lee Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.14 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • A multipurpose operating system was developed to adjust both spray times and ventilation method without a configuration of the moving path and the type of the greenhouse. The multipurpose working system proved to be a reliable system for testing the growth quality of the fruit vegetables in the greenhouse. The results are as follows. The first leaf, diameter of a stem, leaf area, and average stem diameter in the Cucumber seedling growth were repressed by high-speed ventilation, but was not repressed by spray times. The first leaf in the Tomato seedling growth was repressed as ventilation velocity was high, but the average stem diameter was not repressed. While the Tomato was given water three times a day, the diameter of a stem and the leaf area were increased as ventilation speed became higher. However, those were different other factors. The Tomato leaf area was larger when given water twice a day than that in hand spray, but showed no difference with ventilation speed. The first leaf, the diameter of a stem and the leaf area of a Red pepper were lower in automatic spraying with ventilation than those in hand spray.

A Study on the Site Selection Method for the Creation of a Flood Buffer Section Considering the Nature-based Solution - Case Study from Upstream of Daecheong Dam to Downstream of Yongdam Dam (자연성기반기술의 홍수완충구간 조성을 위한 입지 선정 방법에 관한 연구 - 대청댐 상류부터 용담댐 하류구간 사례 연구)

  • Ji, Un;Jang, Eun-kyung;Bae, Inhyeok;Ahn, Myeonghui;Bae, Jun
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.131-140
    • /
    • 2022
  • The magnitude and frequency of extreme floods are increasing owing to the effects of climate change. Therefore, multipurpose flood management techniques incorporating nature-based solutions have been introduced to mitigate the limitations of flood management and river design methods relying on existing observation data. Nature-based solutions to prepare for such extreme flooding events include ways to retreat the embankment, expand the floodplain, and reduce flood damage. To apply these technologies, adopting appropriate location selection methods based on various evaluation factors, such as flood damage reduction effects, sustainable ecological environments, river connectivity, and physical channel structure enhancements, should be prioritized. Therefore, in this study, the optimal location for implementing the multipurpose floodplain construction project was determined by selecting the location of the floodplain expansion with objectivity in the river waterfront area upstream of Daecheong Dam to downstream of Yongdam Dam. Through the final location determination, the Dongdaeje and Jeogokje sections were included in the optimal location considering both flood damage reduction and water environment improvement.

Concept and Indicators of Eco-Efficient Water Infrastructure for Asia and the Pacific

  • Lee, Seung-Ho;Kang, Boo-Sik;Hong, Il-Pyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2169-2175
    • /
    • 2009
  • This research aims to evaluate the concept of eco-efficient water infrastructure and provides a list of case studies in order to help understand the applicability of eco-efficient water infrastructure to Asia and the Pacific. A set of indicators have been explored to assess eco-efficiency in water infrastructure for the region on a micro and macro scale. The core idea of eco-efficiency, 'more value with less impact (on the environment)', has proven to be applicable in management of water infrastructure. The fundamental elements in eco-efficient water infrastructure should encompass physical infrastructure and non-physical infrastructure, which is more needed particularly in Asian countries. The case studies have demonstrated the applicability of the concept of eco-efficient water infrastructure. The Republic of Korea has provided the case of the eco-friendly approaches to enhance dam management and its innovative solutions how to use water more efficiently through state-of-art technologies. The experiences of Singapore are some of the best evidence to establish eco-efficient water infrastructure, for instance, the NEWater project via application of cutting edge technologies (recycled water) and institutional reform in water tariff systems to conserve water as well as enhance water quality. A list of indicators to assess eco-efficiency in water infrastructure have been discussed, and the research presents a myriad of project cases which are good to represent eco-efficiency in water infrastructure, including multipurpose small dams, customized flood defense systems, eco-efficient ground water use, and eco-efficient desalination plants. The study has presented numerous indicators in five different categories: 1) the status of water availability and infrastructure; 2) production and consumption patterns of freshwater; 3) agricultural products and sources of environmental loads; 4) damages from water-caused natural disaster; and 5) urban water supply and sanitation. There are challenges as well as benefits in such indicators, since the indicators should be applied very carefully in accordance with specific socio-economic, political and policy contexts in different countries in Asia and the Pacific Region. The key to success of establishment of eco-efficient water infrastructure in Asia primarily depends on the extent to which each country is committed to balancing its development of physical as well as non-physical water infrastructure. Particularly, it is imperative for Asian countries to transform its policy focus from physical infrastructure to non-physical infrastructure. Such shift will help lead to implementation of sustainable in Asian countries.

  • PDF

Analysis of Water Quality Characteristics According to Short-term Fluctuation of Water Level in the New Dam: Focused on the Upstream Watershed of Yeongju Multipurpose Dam (신규 댐 건설 전후의 수질변동 분석: 영주댐 상류유역을 중심으로)

  • Lee, Saeromi;Park, Jae Roh;Hwang, Tae Mun;Ahn, Chang Hyuk
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.431-444
    • /
    • 2020
  • The relationship between dam construction and water quality has recently come to be considered an important issue. A dam is a physical factor which causes changes to the river system around it. Considering these points, this study was conducted to obtain basic data by analyzing the relationship between water level fluctuations and water quality parameters in the short-term. In terms of methodology, the new construction of the Yeongju Dam (M5) in 2016 was divided into Stage 1 as the lotic system and Stage 2 as the lentic system, with four years in each period, and the water level fluctuations and water quality were analyzed using official data. As a result of this study, M5, a stagnant area in which organic matter and nutrients accumulate, was found to be an important factor in water quality management. In addition, the water level changed rapidly (0.9±0.2 m → 10.9±7.1 m) as the river environment condition was converted from the lotic system to the lentic system. In addition, water quality parameters such as BOD, COD, TOC, and Chl-a significantly changed in the short-term. Further, since the transport of organic matter and nutrients occurred well in the lotic system, sedimentation was expected to be dominant in the lentic system. Therefore, it was determined that when the river flow is blocked, autochthonous organic matter is an important factor for long-term water quality management in the future. This process can increase the trophic state of the water body. As a result of this study, the TSIKO value was converted from mesotrophic in Stage 1 to eutrophic in Stage 2. Eventually, short-term changes in the river environment will affect not only changes in water level but also changes in water quality. Thus, a comprehensive and strategic approach is needed for long-term water quality management in the future.

Evaluation of flood control capacity of agricultural reservoirs during flood season (홍수기 농업용 저수지의 홍수조절용량의 평가)

  • Jang, Ik Geun;Lee, Jae Yong;Lee, Jeong Beom;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.4
    • /
    • pp.69-75
    • /
    • 2014
  • We investigated flood control capacity of 484 agricultural reservoirs with storage capacity of over 1 million $m^3$ in South Korea. In general, agricultural reservoir secures flood control capacity by setting up limited water level during flood season from late June to mid-September. The flood control capacity of an agricultural reservoir during flood season can be divided into stable flood control capacity during non-flood season, stable flood control capacity associated with limited water level, and unstable flood control capacity associated with limited water level. In general, the flood control capacity significantly (P < 0.001) increased with reservoir capacity irrespective of type of spillway. The unstable flood control capacity accounted for about 20 % of reservoir capacity in the uncontrolled reservoirs. The study reservoirs showed flood control capacity of 0.60-65 billion (B) $m^3$ and stable flood control capacity of 0.43-47 B $m^3$, depending on the upper and lower limited water levels during the flood season. The stable flood control capacity of the gated reservoirs (0.29-0.33 B $m^3$) was about two times than that of reservoirs with uncontrolled spillways (0.14 B $m^3$). The ratios of stable flood control capacity to reservoir capacity for agricultural reservoirs range from 21 to 23 %, similar to that for Daecheong multipurpose dam. Moreover, the reservoirs with over 100 mm ratio of flood control capacity to watershed area accounted for 38 % of total gated reservoirs. The results indicate that many agricultural reservoirs may contribute to controlling flood in the small watersheds during the flood season.