• Title/Summary/Keyword: Multiport Amplifier (MPA)

Search Result 4, Processing Time 0.018 seconds

Adaptive Calibration Method in Multiport Amplifier for K-Band Payload Applications

  • Moon, Seong-Mo;Shin, Dong-Hwan;Lee, Hong-Yul;Uhm, Man-Seok;Yom, In-Bok;Lee, Moon-Que
    • ETRI Journal
    • /
    • v.35 no.4
    • /
    • pp.718-721
    • /
    • 2013
  • This letter proposes a novel calibration method for a multiport amplifier (MPA) to achieve optimum port-to-port isolation by correcting both the amplitude and phase of the calibration signals. The proposed architecture allows for the detection of the phase error and amplitude error in each RF signal path simultaneously and can enhance the calibrated resolution by controlling the analog phase shifters and attenuators. The designed $2{\times}2$ and $4{\times}4$ MPAs show isolation characteristics of 30 dB and 27 dB over a frequency range of 19.5 GHz to 22.5 GHz, respectively.

A 4×4 Multiport Amplifier System with Reconfigurable Switching Matrices and Error Calibration (재구성 스위칭 매트릭스와 에러 보정회로를 포함한 4×4 다중 포트 증폭 시스템)

  • Lee, Han Lim;Park, Dong-Hoon;Lee, Won-Seok;Khang, Seung-Tae;Lee, Moon-Que;Yu, Jong-Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.6
    • /
    • pp.637-645
    • /
    • 2014
  • This paper presents a new $4{\times}4$ multi-port amplifier(MPA) structure using reconfigurable switching matrices as input and output hybrid matrices(IHM, OHM), and phase/amplitude error calibration circuits. According to the mode selection of the switches, output power can be flexibly and effectively managed since the number of PA's to be used and the number of output port to distribute/combine amplified signals can be controlled. In addition, the proposed structure contains the phase and amplitude error calibration block that helps produce identical amplitudes and desired phase differences to the $4{\times}4$ OHM, resulting in optimizing the port-to-port isolation of the MPA system.

A Selective Wireless Power Transfer Architecture Using Reconfigurable Multiport Amplifier (재구성 다중포트 전력증폭기를 이용한 선택적 무선 전력 전송 구조)

  • Park, Seung Pyo;Choi, Seung Bum;Lee, Seung Min;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.5
    • /
    • pp.521-524
    • /
    • 2015
  • This letter presents a selective wireless power transfer architecture using a reconfigurable multi-port amplifier. The proposed wireless power transfer architecture is composed of a phase shifter part controlled by FPGA, two class-E power amplifiers, a four-port power combiner and two coil loads. Depending on the phase control of FPGA, the power ratio of outputs at the two coil loads becomes 1:1, 2:0 and 0:2. The manufactured system has delivered 1W DC power to loads at 125 kHz. The total DC-to-DC conversion efficiency shows more than 40 % including PA efficiency of 79 %.

Reconfigurable Wireless Power Transfer System for Multiple Receivers

  • Hwang, Sun-Han;Kang, Chung G.;Lee, Seung-Min;Lee, Moon-Que
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.4
    • /
    • pp.199-205
    • /
    • 2016
  • We present a novel schematic using a 3-dB coupler to transmit radiofrequency (RF) power to two receivers selectively. Whereas previous multiple receiver supporting schemes used hardware-switched methods, our scheme uses a soft power-allocating method, which has the advantage of variable power allocation in real time to each receiver. Using our scheme, we can split the charging area and focus the RF power on the targeted areas. We present our soft power-allocating method in three main points. First, we propose a new power distribution hardware structure using a FPGA (field-programmable gate array) and a 3-dB coupler. It can reconfigure the transmitting power to two receivers selectively using accurate FPGA-controlled signals with the aid of software. Second, we propose a power control method in our platform. We can variably control the total power of transmitter using the DC bias of the drain input of the amplifier. Third, we provide the possibility of expansion in multiple systems by extending these two wireless power transfer systems. We believe that this method is a new approach to controlling power amplifier output softly to support multiple receivers.