• Title/Summary/Keyword: Multiple-input multiple-output (MIMO) multiplexing

Search Result 139, Processing Time 0.021 seconds

Collision Performance Improvement in Orthogonal Code Hopping Multiplexing Systems Using Multiple Antennas (다중 안테나를 이용한 직교 부호 도약 다중화 시스템의 성능향상)

  • Jung, Bang-Chul;Lee, Woo-Jae;Park, Yeoun-Sik;Jeon, Seong-Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2100-2112
    • /
    • 2011
  • An orthogonal code hopping multiplexing (OCHM) technique has been proposed for accommodating a large number of users with low channel activities than the number of orthogonal codewords through statistical multiplexing in downlink cellular systems. In this paper, a multiple input multiple output (MIMO) antenna based OCHM system is proposed to improve the performance. Each modulated symbol is repeated N times and the N repeated symbols are transmitted simultaneously using N transmit antennas. Through repetitions, the effect of perforations that the OCHM system experiences is decentralized among the repeated symbols and the full perforation probability is significantly reduced. Each receiver detect the transmitted signal using its pre-assigned code hopping pattern. Simulation results show that the proposed scheme saves the required energy for a given frame error rate (FER).

Design and Implementation of Multi-channel FFT Processor for MIMO Systems (MIMO 시스템을 위한 다채널 FFT 프로세서의 설계 및 구현)

  • Jung, Yongchul;Cho, Jaechan;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.659-665
    • /
    • 2017
  • In this paper, a low complexity fast Fourier transform(FFT) processor is proposed for multiple input multiple output(MIMO) systems. The IEEE 802.11ac standard has been adopted along with the demand for a system capable of high channel capacity and Gbps transmission in order to utilize various multimedia services using a wireless LAN. The proposed scalable FFT processor can support the variable length of 64, 128, 256, and 512 for 8x8 antenna configuration as specified in IEEE 802.11ac standard with MIMO-OFDM scheme. By reducing the required number of non-trivial multipliers with mixed-radix(MR) and multipath delay commutator(MDC) architecture, the complexity of the proposed FFT processor was dramatically decreased. Implementation results show that the proposed FFT processor can reduced the logic gate count by 50%, compared with the radix-2 SDF FFT processor. Also, compared with the 8-channel MR-2/2/2/4/2/4/2 MDC processor and 8-channel MR-2/2/2/8/8 MDC processor, it is shown that the gate count is reduced by 18% and 17% respectively.

Adaptive Modulation and Coding of MIMO in Next Generation Mobile Systems (차세대 MIMO 이동통신에서 적응변조시스템의 성능분석)

  • Kang Sung-Jin;Jang Tae-Won;You Young-Whan;Whang In-Tae;Kang Min-Goo;Kang Chang-Eon
    • Journal of Internet Computing and Services
    • /
    • v.4 no.5
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, we combine AMC (Adaptive Modulation and Coding) with MIMO (Multiple Input Multiple Output) multiplexing to improve the throughput performance of AMC in Next Generation Communication Mobile Systems. In addition, we propose a system that adopts STD (Selection Transmit Diversity) in the combined system. The received SNR (Signal to Noise Ratio) is improved by adopting STD techniques and an improved SNR increases a probability of selecting MCS (Modulation and Coding Scheme) level that supports higher data rate. The computer simulation is performed in flat Rayleigh fading channel. The results show that higher throughput is achieved by AMC-TD schemes. AMC-STTD scheme shows about 250kbps increase in throughput. And AMC-STD with 2 transmit antennas achieves about 420 kbps throughput improvement over the conventional AMC at 9dB SNR.

  • PDF

A Novel Transmission Scheme with Spatial Modulation for Coded OFDM Systems (채널 부호화된 OFDM 시스템을 위한 공간 변조를 이용한 새로운 전송 기법)

  • Hwang, Soon-Up;Kim, Young-Ki;Jeon, Sung-Ho;Kang, Woo-Seok;Seo, Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.7A
    • /
    • pp.515-522
    • /
    • 2009
  • In this paper, a novel transmission scheme with spatial modulation is proposed for coded orthogonal frequency division multiplexing (OFDM). The multiple-input multiple-output (MIMO) technique, so-called spatial modulation (SM), divides input data into antenna index and data signals, transmitting data signals through the specific antenna chosen by the antenna index. In order to retrieve data stream at the receiver, SM needs to detect the antenna index which means that data signals are transmitted via a certain antenna. For this reason, it should be guaranteed that channel matrix is orthogonal. For the real environment, a MIMO channel has difficulty in maintaining orthogonality due to spatial correlation. Moreover, the receiver of the conventional SM is operated by hard decision, so that this scheme has a limit to be adopted for practical systems. Therefore, soft-output demappers for the conventional and proposed schemes are derived to detect antenna index and data stream by soft decision, and a novel transmission scheme combined with spatial modulation is proposed to improve the bit error rate (BER) performance of the conventional scheme.

Design and Implementation of Efficient Symbol Detector for MIMO Spatial Multiplexing Systems (MIMO 공간 다중화 시스템을 위한 효율적인 심볼 검출기의 설계 및 구현)

  • Jung, Yun-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.75-82
    • /
    • 2008
  • In this paper, we propose an efficient symbol detection algorithm for multiple-input multiple-output spatial multiplexing (MIMO-SM) systems and present its design and implementation results. By enhancing the performance of the first detected symbol which causes error propagation, the proposed algorithm achieves a considerable performance gain as compared to the conventional sorted QR decomposition (SQRD) based detection and the ordered successive detection (OSD) algorithms. The bit error rate (BER) performance of the proposed detection algorithm is evaluated by the simulation. In case of 16QAM MIMO-SM system with 4 transmit and 4 receive ($4{\times}4$) antennas, at $BER=10^{-3}$ the proposed algorithm obtains the gai improvement of about 2.5-13.5 dB over the conventional algorithms. The proposed detection algorithm was designed in a hardware description language (HDL) and synthesized to gate-level circuits using 0.18um 1.8V CMOS standard cell library. The results show that the proposed algorithm can be implemented without increasing the hardware costs significantly.

Performance Analysis of MIMO Detection in Frequency Selective Rayleigh Fading Channels (주파수 선택적 Rayleigh 페이딩 채널에서의 MIMO 검출 성능 연구)

  • An, Jin-Young;Kim, Sang-Choon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.5
    • /
    • pp.974-979
    • /
    • 2009
  • The BER performance of a MIMO detection scheme on frequency selective Rayleigh fading channels is analytically discussed. The presented MIMO detection scheme consists of temporal and spatial combiners followed by a ZF detector. It is shown that for a MIMO system with $N_T$ transmit antennas, $N_R$ receive antennas, and L resolvable multipath components, it achieves the diversity order of $LN_R-N_T+1$. In frequency selective Rayleigh fading channels, an analytical error rate expression of the systems is also provided and the analytical error performance is compared with the simulated results.

Subspace Method Based Preceding for Spatial Multiplexing with Limited Feedback (제한된 피드백 정보를 사용하는 공간 다중화를 위한 부 공간 방식 기반 Precoding 기법)

  • Mun Cheol;Seo Jeong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.906-911
    • /
    • 2005
  • In this paper, for spatial multiplexing with limited feedback, we propose subspace method based preceding in which the active bases are selected at the receiver from a finite number of basis sets Down at both receiving and transmitting ends, conveyed to the transmitter using limited feedback, and assembled into a preceding matrix at the transmitter. The selected bases are conveyed to the transmitter using feedback information on both the index of the selected basis set, which defines the most appropriate set of coordinates for describing a multiple-input multiple-output (MIMO) channel, and the principal bases maximizing the capacity in the selected basis set. We show that the proposed subspace method based preceding provides a capacity similar to that of the closed-loop MIMO even with limited feedback.

Performance of Multi-User MIMO/OFDM System using Cyclic Delay Diversity for Fading Channels (페이딩 채널에서 순환 지연 다이버시티를 적용한 다중 사용자 MIMO OFDM 시스템의 성능)

  • Park, In-Hwan;Kim, Yoon-Hyun;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.6
    • /
    • pp.263-268
    • /
    • 2010
  • As the demand of high quality service in next generation wireless communication systems, a high performance of data transmission requires an increase of spectrum efficiency and an improvement of error performance in wireless communication systems. In this paper, we propose a multi-user multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system with cyclic delay diversity and block diagonalization procoding method to improve bit error rate (BER) performance with wireless local area network (WLAN) channel model C and D for 802.11n WLAN system. The results of mathlab simulation show the improvement of BER performance in 802.11n wireless indoor channel environment.

Subcarrier and Power Allocation for Multiuser MIMO-OFDM Systems with Various Detectors

  • Mao, Jing;Chen, Chen;Bai, Lin;Xiang, Haige;Choi, Jinho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.10
    • /
    • pp.4738-4758
    • /
    • 2017
  • Resource allocation plays a crucial role in multiuser multiple input multiple output orthogonal frequency division multiplexing (MIMO-OFDM) systems to improve overall system performance. While previously proposed resource allocation algorithms are mainly designed from the point of view of the information-theoretic, we formulate the resource allocation problem as an average bit error rate (BER) minimization problem subject to a total power constraint when considering employing realistic MIMO detection techniques. Subsequently, we derive the optimal subcarrier and power allocation algorithms for three types of well-known MIMO detectors, including the maximum likelihood (ML) detector, linear detectors, and successive interference cancellation (SIC) detectors. To reduce the complexity, we also propose a two-step suboptimal algorithm that separates subcarrier and power allocation for each detector. We also analyze the diversity gain of the proposed suboptimal algorithms for various MIMO detectors. Simulation results confirm that the proposed suboptimal algorithm for each detector can achieve a comparable performance with the optimal allocation with a much lower complexity. Moreover, it is shown that the suboptimal algorithms perform better than the conventional algorithms that are known in the literature.

Interpolation-based Precoding Approximation Algorithm for Low Complexity in Multiuser MIMO-OFDM Systems (다중 사용자 MIMO-OFDM 시스템에서 계산양 감소를 위한 선형 보간법 기반 프리코딩 근사화 기법)

  • Lim, Dong-Ho;Kim, Bong-Seok;Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11A
    • /
    • pp.1027-1037
    • /
    • 2010
  • In this paper, we propose the linear interpolation-based BD (Block Diagonalization) precoding approximation algorithm for low complexity in downlink multiuser MIMO-OFDM (Multiple-input Multiple-output Orthogonal Frequency Division Multiplexing) systems. In the case of applying the general BD precoding algorithm to multiuser MIMO-OFDM systems, the computational complexity increases in proportional to the number of subcarriers. The proposed interpolation-based BD precoding approximation algorithm can be achieved similar SER performance with general BD algorithm and can decrease the computational complexity. It is proved that proposed algorithm can achieve the significantly decreased computational complexity by computer simulation.