• Title/Summary/Keyword: Multiple user interference

Search Result 293, Processing Time 0.025 seconds

Joint Detection Method for Non-orthogonal Multiple Access System Based on Linear Precoding and Serial Interference Cancellation

  • Li, Jianpo;Wang, Qiwei
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.933-946
    • /
    • 2021
  • In the non-orthogonal multiple access (NOMA) system, multiple user signals on the single carrier are superimposed in a non-orthogonal manner, which results in the interference between non-orthogonal users and noise interference in the channel. To solve this problem, an improved algorithm combining regularized zero-forcing (RZF) precoding with minimum mean square error-serial interference cancellation (MMSE-SIC) detection is proposed. The algorithm uses RZF precoding combined with successive over-relaxation (SOR) method at the base station to preprocess the source signal, which can balance the effects of non-orthogonal inter-user interference and noise interference, and generate a precoded signal suitable for transmission in the channel. At the receiver, the MMSE-SIC detection algorithm is used to further eliminate the interference in the signal for the received superimposed signal, and reduce the calculation complexity through the QR decomposition of the matrix. The simulation results show that the proposed joint detection algorithm has good applicability to eliminate the interference of non-orthogonal users, and it has low complexity and fast convergence speed. Compared with other traditional method, the improved method has lower error rate under different signal-to-interference and noise ratio (SINR).

Channel Quantization for Block Diagonalization with Limited Feedback in Multiuser MIMO Downlink Channels

  • Moon, Sung-Hyun;Lee, Sang-Rim;Kim, Jin-Sung;Lee, Inkyu
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Block diagonalization (BD) has been proposed as a simple and effective technique in multiuser multiple-input multiple-output (MU-MIMO) broadcast channels. However, when channel state information (CSI) knowledge is limited at the transmitter, the performance of the BD may be degraded because inter-user interference cannot be completely eliminated. In this paper, we propose an efficient CSI quantization technique for BD precoded systems with limited feedback where users supported by a base station are selected by dynamic scheduling. First, we express the received signal-to-interference-plus-noise ratio (SINR) when multiple data streams are transmitted to the user, and derive a lower bound expression of the expected received SINR at each user. Then, based on this measure, each user determines its quantized CSI feedback information which maximizes the derived expected SINR, which comprises both the channel direction and the amplitude information. From simulations, we confirm that the proposed SINR-based channel quantization scheme achieves a significant sum rate gain over the conventional method in practical MU-MIMO systems.

Non-Orthogonal Multiple Access (NOMA) to Enhance Capacity in 5G

  • Lim, Sungmook;Ko, Kyunbyoung
    • International Journal of Contents
    • /
    • v.11 no.4
    • /
    • pp.38-43
    • /
    • 2015
  • Non-orthogonal multiple access (NOMA) where all users share the entire time and frequency resource has paid attention as one of the key technologies to enhance the spectral efficiency and the total throughput. Nevertheless, as the number of users and SIC error increase, the inter-user interference and the residual interference due to the SIC error also increase, resulting in performance degradation. In order to mitigate the performance degradation, we propose grouping-based NOMA system. In the proposed scheme, all users are divided into two groups based on the distance between the BS and each user, where one utilizes the first half of the bandwidth and the other utilizes the rest in the orthogonal manner. On the other hand, users in each group share the spectrum in the non-orthogonal manner. Grouping users can reduce both the inter-user interference and residual interference due to the SIC error, so it can outperform conventional NOMA system, especially in case that the number of users and the SIC error increase. Based on that, we also present the hybrid operation of the conventional and the proposed NOMA systems. In numerical results, the total throughput of the proposed NOMA systems is compared with that of the conventional NOMA systems with regard to the number of users and SIC error. It is confirmed that the proposed NOMA system outperforms the conventional NOMA system as the number of users and the SIC error increase.

A half subcarrier guard band spectrum assignment scheme for multi-user FBMC systems

  • Huang, Wei;Xu, Hongbo;Li, Zhongnian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.1
    • /
    • pp.350-364
    • /
    • 2022
  • Traditionally, in multi-user multi-carrier systems, the neighboring subband will be gapped by one subcarrier, which is set as guard band to reduce multiple access interference (MAI) between neighboring subbands. The empty subcarrier for guard band will degrade the spectral efficiency of the whole system. In order to enhance the spectral efficiency of multi-user filter bank multiple carrier (FBMC) systems, a new subband allocation method is introduced, in which the neighboring subband is gapped by half subcarrier instead of one subcarrier. Meanwhile, in order to implement the proposed resource allocation scheme, an optimized FBMC prototype filter is designed to decrease the inter-subband interference to the neighboring subband. The detailed simulations about the comparison between the proposed spectrum assignment and traditional FBMC are given, as well as the performance in the different interference scenarios. The simulation results show that the combination of the proposed spectrum assignment scheme and the optimized filter has better performance compared to the traditional scheme. The proposed scheme can be used in the system which serves massive users to get higher spectrum efficiency.

Blind MOE Interference Canceller for Multicarrier DS-CDMA Systems (다중 반송파 DS-CDMA 시스템을 위한 블라인드 MOE 간섭 제거기)

  • Woo Dae Ho;Byun Youn Shik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10C
    • /
    • pp.1395-1401
    • /
    • 2004
  • In The objective of this paper is to apply blind minimum output energy multiuser detection method to multicarrier direct sequence code division multiple access system. The performance of MC/DS-CDMA is reduced due to multiple access. To increase the performance of system, we need to cancel multiple user components. Blind interference canceller is able to detect the desired's information with the only minimal information of the desired user. We evaluate the performance of the proposed receiver under Gaussian channel. Simulation results show that the proposed receiver has about 6[dB] gain of signal to noise ratio without multiple user interference and has about 3[dB] gain of SNR with multiple user interference. Also, the result of comparing the capacity of the active users shows that the proposed method has about 2 times capacity more than conventional method. As a conclusion, simulation results show that the proposed method has better performs better than conventional method.

Interference Management with Block Diagonalization for Macro/Femto Coexisting Networks

  • Jang, Uk;Cho, Kee-Seong;Ryu, Won;Lee, Ho-Jin
    • ETRI Journal
    • /
    • v.34 no.3
    • /
    • pp.297-307
    • /
    • 2012
  • A femtocell is a small cellular base station, typically designed for use in a home or small business. The random deployment of a femtocell has a critical effect on the performance of a macrocell network due to co-channel interference. Utilizing the advantage of a multiple-input multiple-output system, each femto base station (FBS) is able to form a cluster and generates a precoding matrix, which is a modified version of conventional single-cell block diagonalization, in a cooperative manner. Since interference from clustered-FBSs located at the nearby macro user equipment (MUE) is the dominant interference contributor to the coexisting networks, each cluster generates a precoding matrix considering the effects of interference on nearby MUEs. Through simulation, we verify that the proposed algorithm shows better performance respective to both MUE and femto user equipment, in terms of capacity.

On the Feasibility of Interference Alignment in the Cellular Network

  • Chen, Hua;Wu, Shan;Hu, Ping;Xu, Zhudi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5324-5337
    • /
    • 2017
  • In this paper, we investigate the feasibility of interference alignment(IA) in signal space in the scenario of multiple cell and multiple user cellular networks, as the feasibility issue is closely related to the solvability of a multivariate polynomial system, we give the mathematical analysis to support the constraint condition obtained from the polynomial equations with the tools of algebraic geometry, and a new distribute IA algorithm is also provided to verify the accessibility of the constraint condition for symmetric system in this paper. Simulation results illustrate that the accessibility of the constraint condition is hold if and only if the degree of freedom(DoF) of each user can be divided by both the transmit and receive antenna numbers.

Orthogonal NOMA Strong Channel User Capacity: Zero Power Non-Zero Capacity Transmission

  • Chung, Kyuhyuk
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.735-738
    • /
    • 2019
  • Recently, orthogonal non-orthogonal multiple access (O NOMA) with polar on-off keying (POOK) has been proposed to mitigate the severe effect of the superposition. However, it is observed that the performance of the O NOMA strong channel user is better than that of the perfect successive interference cancellation (SIC), i.e., the performance of a single user transmission with binary phase shift keying (BPSK). Can the performance of the BPSK modulation be better that that of itself? It is not normal. It should be clearly understood theoretically, with the ultimate bound, i.e., the channel capacity. This paper proves that the channel capacity of the O NOMA strong channel user is non-zero with zero power allocation. Thus, it is shown that the interference is transformed effectively into the meaningful signal.

The Calculation of the Exact BER of UWB-TH BPSK Communication systems with the Multiple User Interference (다중 사용자 간섭을 고려한 TH-BPSK UWB 통신 시스템의 정확한 BER 계산)

  • Park, Jang-Woo;Choi, Yong-Seok;Cho, Kyung-Ryong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.951-957
    • /
    • 2005
  • The bit error probability of UWB Time-Hopping(TH) multiple access communication systems combined with BPSK is calculated with a high accuracy including the multiple user interference(MUI). This paper finds that with some manipulations, the TH-BPSK UWB signal can be modified to the similar form of the DS-CDMA signal. The MUI in the system is explained by the characteristic function technique. Above two descriptions have been bases on the derivation of the exact BER expression of the system. We also propose the approximate expression for the BER, which has enough accuracy compared with the expression from the Gaussian approximation of the MUI. The comparison of the results from the proposed expressions with the simulation results gives the confirmation for the validity and accuracy of the proposed expressions.

Efficient Near-Optimal Detection with Generalized Sphere Decoder for Blind MU-MIMO Systems

  • Kim, Minjoon;Park, Jangyong;Kim, Hyunsub;Kim, Jaeseok
    • ETRI Journal
    • /
    • v.36 no.4
    • /
    • pp.682-685
    • /
    • 2014
  • In this letter, we propose an efficient near-optimal detection scheme (that makes use of a generalized sphere decoder (GSD)) for blind multi-user multiple-input multiple-output (MU-MIMO) systems. In practical MU-MIMO systems, a receiver suffers from interference because the precoding matrix, the result of the precoding technique used, is quantized with limited feedback and is thus imperfect. The proposed scheme can achieve near-optimal performance with low complexity by using a GSD to detect several additional interference signals. In addition, the proposed scheme is suitable for use in blind systems.