• Title/Summary/Keyword: Multiple smart objects control

Search Result 6, Processing Time 0.021 seconds

A Study on Multi-Object Control Method Using Smartphone Bluetooth Communication and the Methodologies of Convergence Research (스마트폰의 블루투스 통신을 이용한 다중 오브젝트 제어방법 및 장치에 관한 융합연구)

  • Kang, Hee-Ra
    • Journal of Digital Convergence
    • /
    • v.13 no.7
    • /
    • pp.341-347
    • /
    • 2015
  • Since the advent of Apple's iPhone, the smartphone industry has been producing new technologies and concepts at an accelerated pace. The speed of progress in this sector is exponentially increasing in accordance with Moore's Law, and smartphones are rapidly changing various aspects of human life. Especially, object control technologies using smartphones are being utilized in various sectors, including robots, home automation, and smart objects. However, the current smartphone object control technology is limited in terms of multicontrol. This study proposes the combined usage of the Bluetooth and Zigbee Modules for multiple object control using smartphones, and presents the necessary application design properties and the methodology for Zigbee communication. The study is an attempt at a territorial expansion of design, as a proposal of new methods for utilizing smartphones in the age of smart objects.

Real-Time Objects Tracking using Color Configuration in Intelligent Space with Distributed Multi-Vision (분산다중센서로 구현된 지능화공간의 색상정보를 이용한 실시간 물체추적)

  • Jin, Tae-Seok;Lee, Jang-Myung;Hashimoto, Hideki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.843-849
    • /
    • 2006
  • Intelligent Space defines an environment where many intelligent devices, such as computers and sensors, are distributed. As a result of the cooperation between smart devices, intelligence emerges from the environment. In such scheme, a crucial task is to obtain the global location of every device in order to of for the useful services. Some tracking systems often prepare the models of the objects in advance. It is difficult to adopt this model-based solution as the tracking system when many kinds of objects exist. In this paper the location is achieved with no prior model, using color properties as information source. Feature vectors of multiple objects using color histogram and tracking method are described. The proposed method is applied to the intelligent environment and its performance is verified by the experiments.

A Study on the Temperature and Humidity Control Methodology of Smart Farm ased on Wireless Communication Network (무선 통신 기반 스마트 농장 온습도 제어 방법론에 대한 연구)

  • Park, Se-Hyeon;Oh, Seong-Hyun;Lee, Sang-Min;Maeng, Jun-Seok;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.4
    • /
    • pp.851-858
    • /
    • 2018
  • In this paper, a temperature and humidity algorithm was proposed to enhance the economic efficiency and productivity of smart farm. The basic conditions of smart farms were analyzed, and the information exchange system between sensors and control objects in smart farms based on wireless communication was designed. Based on this, a temperature and humidity control algorithm was developed so that temperature, humidity and soil humidity within smart farm can be followed in predefined values for plant growth. To verify the validity of the proposed design methodology and control algorithm, a prototype of small scale smart farm based on 2.4GHz wireless communication were built and their validity was confirmed through repeated temperature and humidity test.

A Indoor Management System using Raspberry Pi (라즈베리 파이를 이용한 실내관리 시스템)

  • Jeong, Soo;Lee, Jong Jin;Jung, Won Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.745-752
    • /
    • 2016
  • In the era of the Internet of Things, where all physical objects are connected to the Internet, we suggest a remote control system using a Raspberry Pi single-board computer with ZigBee, which can turn an indoor light-emitting diode (LED) and a multiple-tap on and off, and with a smart phone can control the brightness of the LED as well as an electronic door lock. By connecting an infrared (IR) transmitter module to the Raspberry Pi, we can control home appliances, such as an air conditioner, and we can also monitor indoor images, indoor temperatures, and illumination by using a smart phone app. We developed a method of finding out IR transmission codes required for remote-controllable appliances with an AVR micro-controller. We suggest a method to remotely open and shut an office door by novating the door lock. The brightness level of an LED (between 0 and 10) can be controlled through a PWM signal generated by an ATmega88 microcontroller. A mutiple-tap is controlled using an ATmega32, a photo-coupler, and a TRIAC. The signals for measured temperature and illumination are converted from analog to digital by using the ATtiny44A microcontroller transmitting to a Raspberry Pi through SPI communication. Then, we connect a camera to the CSI head of the Raspberry Pi. We can turn on the smart multiple-tap for a certain period of time, or we can schedule the multi-tap to turn on at a specific time. To reduce standby power, people usually pull out a power code from multiple-taps or turn off a switch. Our method helps people do the same thing with a smart phone, if they are away from home.

Design and Implementation of Optimal Smart Home Control System (최적의 스마트 홈 제어 시스템 설계 및 구현)

  • Lee, Hyoung-Ro;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.135-141
    • /
    • 2018
  • In this paper, we describe design and implementation of optimal smart home control system. Recent developments in technologies such as sensors and communication have enabled the Internet of Things to control a wide range of objects, such as light bulbs, socket-outlet, or clothing. Many businesses rely on the launch of collaborative services between them. However, traditional IoT systems often support a single protocol, although data is transmitted across multiple protocols for end-to-end devices. In addition, depending on the manufacturer of the Internet of things, there is a dedicated application and it has a high degree of complexity in registering and controlling different IoT devices for the internet of things. ARIoT system, special marking points and edge extraction techniques are used to detect objects, but there are relatively low deviations depending on the sampling data. The proposed system implements an IoT gateway of object based on OneM2M to compensate for existing problems. It supports diverse protocols of end to end devices and supported them with a single application. In addition, devices were learned by using deep learning in the artificial intelligence field and improved object recognition of existing systems by inference and detection, reducing the deviation of recognition rates.

Design of Small Space Convergence Locking device Using IoT (IOT를 이용한 소규모 공간의 융합 잠금 장치 제안)

  • Park, Hyun-Joo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.45-50
    • /
    • 2021
  • In this paper, we propose the development of a smart space security device that can be opened and closed remotely using IoT. Existing space security devices can control opening and closing by breaking hardware or only using button devices or replicated keys. The recent COVID-19 crisis has created several applications for non-contact devices. In this study, we propose the development of a small space security device that has the function of unlocking through an app without touching the device. By transferring the control authority to a smartphone, device that cannot be opened or closed by only operating hardware at the user's option. It is convenient and hygienic because it can be opened and closed using an app without touching the locking device. Multiple security is possible because security can be released using an app after user authentication by fingerprint recognition and pattern input on a smartphone. If the user wishes, after using the app security, the security is released by directly touching a button installed in the safe or space or opening it with a key. In addition, by adding an inactive function to the app, it is designed so that the door of the safe cannot be opened when the key is lost or the small safe is lost. This study is expected to be able to effectively expand the security system by applying variously to objects that require security.