• Title/Summary/Keyword: Multiple response surface optimization

Search Result 89, Processing Time 0.027 seconds

Dual Response Surface Optimization using Multiple Objective Genetic Algorithms (다목적 유전 알고리즘을 이용한 쌍대반응표면최적화)

  • Lee, Dong-Hee;Kim, Bo-Ra;Yang, Jin-Kyung;Oh, Seon-Hye
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.43 no.3
    • /
    • pp.164-175
    • /
    • 2017
  • Dual response surface optimization (DRSO) attempts to optimize mean and variability of a process response variable using a response surface methodology. In general, mean and variability of the response variable are often in conflict. In such a case, the process engineer need to understand the tradeoffs between the mean and variability in order to obtain a satisfactory solution. Recently, a Posterior preference articulation approach to DRSO (P-DRSO) has been proposed. P-DRSO generates a number of non-dominated solutions and allows the process engineer to select the most preferred solution. By observing the non-dominated solutions, the DM can explore and better understand the trade-offs between the mean and variability. However, the non-dominated solutions generated by the existing P-DRSO is often incomprehensive and unevenly distributed which limits the practicability of the method. In this regard, we propose a modified P-DRSO using multiple objective genetic algorithms. The proposed method has an advantage in that it generates comprehensive and evenly distributed non-dominated solutions.

Optimization in Multiple Response Model with Modified Desirability Function

  • Cho, Young-Hun;Park, Sung-Hyun
    • International Journal of Quality Innovation
    • /
    • v.7 no.3
    • /
    • pp.46-57
    • /
    • 2006
  • The desirability function approach to multiple response optimization is a useful technique for the analysis of experiments in which several responses are optimized simultaneously. But the existing methods have some defects, and have to be modified to some extent. This paper proposes a new method to combine the individual desirabilities.

An Interactive Approach to Multiple Response Optimization (다중반응최적화를 위한 상호교호적 접근법)

  • Lee, Pyoungsoo;Park, K. Sam
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.40 no.3
    • /
    • pp.49-61
    • /
    • 2015
  • We study the problem of multiple response optimization (MRO) and focus on the selection of input levels which will produce desirable output quality. We propose an interactive multiple objective optimization approach to the input design. The earlier interactive methods utilized for MRO communicate with the decision maker only using the response variable values, in order to improve the current response values, thereby resulting in the corresponding design solution automatically. In their interaction steps of preference articulation, no account is taken of any active changes in design variable values. On the contrary, our approach permits the decision maker to change the design variable values in its interaction stage, which makes possible the consideration of the preference or economics of the design variable side. Using some typical value functions, we also demonstrate that our method converges reasonably well to the known optimal solutions.

Simulation Optimization Methods with Application to Machining Process (시뮬레이션 최적화 기법과 절삭공정에의 응용)

  • 양병희
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.2
    • /
    • pp.57-67
    • /
    • 1994
  • For many practical and industrial optimization problems where some or all of the system components are stochastic, the objective functions cannot be represented analytically. Therefore, modeling by computer simulation is one of the most effective means of studying such complex systems. In this paper, with discussion of simulation optimization techniques, a case study in machining process for application of simulation optimization is presented. Most of optimization techniques can be classified as single-or multiple-response techniques. The optimization of single-response category, these strategies are gradient based search methods, stochastic approximate method, response surface method, and heuristic search methods. In the multiple-response category, there are basically five distinct strategies for treating the responses and finding the optimum solution. These strategies are graphical method, direct search method, constrained optimization, unconstrained optimization, and goal programming methods. The choice of the procedure to employ in simulation optimization depends on the analyst and the problem to be solved.

  • PDF

A Weighted Mean Squared Error Approach to Multiple Response Surface Optimization (다중반응표면 최적화를 위한 가중평균제곱오차)

  • Jeong, In-Jun;Cho, Hyun-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.625-633
    • /
    • 2013
  • Multiple response surface optimization (MRSO) aims at finding a setting of input variables which simultaneously optimizes multiple responses. The minimization of mean squared error (MSE), which consists of the squared bias and variance terms, is an effective way to consider the location and dispersion effects of the responses in MRSO. This approach basically assumes that both the terms have an equal weight. However, they need to be weighted differently depending on a problem situation, for example, in case that they are not of the same importance. This paper proposes to use the weighted MSE (WMSE) criterion instead of the MSE criterion in MRSO to consider an unequal weight situation.

A Univariate Loss Function Approach to Multiple Response Surface Optimization: An Interactive Procedure-Based Weight Determination (다중반응표면 최적화를 위한 단변량 손실함수법: 대화식 절차 기반의 가중치 결정)

  • Jeong, In-Jun
    • Knowledge Management Research
    • /
    • v.21 no.1
    • /
    • pp.27-40
    • /
    • 2020
  • Response surface methodology (RSM) empirically studies the relationship between a response variable and input variables in the product or process development phase. The ultimate goal of RSM is to find an optimal condition of the input variables that optimizes (maximizes or minimizes) the response variable. RSM can be seen as a knowledge management tool in terms of creating and utilizing data, information, and knowledge about a product production and service operations. In the field of product or process development, most real-world problems often involve a simultaneous consideration of multiple response variables. This is called a multiple response surface (MRS) problem. Various approaches have been proposed for MRS optimization, which can be classified into loss function approach, priority-based approach, desirability function approach, process capability approach, and probability-based approach. In particular, the loss function approach is divided into univariate and multivariate approaches at large. This paper focuses on the univariate approach. The univariate approach first obtains the mean square error (MSE) for individual response variables. Then, it aggregates the MSE's into a single objective function. It is common to employ the weighted sum or the Tchebycheff metric for aggregation. Finally, it finds an optimal condition of the input variables that minimizes the objective function. When aggregating, the relative weights on the MSE's should be taken into account. However, there are few studies on how to determine the weights systematically. In this study, we propose an interactive procedure to determine the weights through considering a decision maker's preference. The proposed method is illustrated by the 'colloidal gas aphrons' problem, which is a typical MRS problem. We also discuss the extension of the proposed method to the weighted MSE (WMSE).

AERODYNAMIC DESIGN OPTIMIZATION OF ROTOR AIRFOIL WITH MULTIPLE CONSTRAINTS (다중제약조건을 가진 로터익형의 공력 최적 설계)

  • Lee, S.M.;Sa, J.H.;Jeon, S.E.;Kim, C.J.;Park, S.H.;Chung, K.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.55-59
    • /
    • 2010
  • Aerodynamic design optimization of rotor airfoil has been performed with advanced design method for improved aerodynamic characteristics of ONERA airfoils as a baseline. A multiple response surface method is used to consider various consider various constraints in rotor airfoil design. Airfoil surface and mean camber line are modified using various shape functions. Numerical simulations are performed using KFLOW, a Navier-Stokes solver with shear stress transport turbulence model. The present design method provides favorable configurations for the high performance rotor airfoil. Resulting optimized air foils give better aerodynamic performance than the baseline airfoils.

  • PDF

AERODYNAMIC DESIGN OPTIMIZATION OF ROTOR BLADE OA AIRFOILS (로터 블레이드 OA 익형의 공력 최적 설계)

  • Sa, J.H.;Park, S.H.;Kim, C.J.;Yun, C.Y.;Kim, S.H.;Kim, S.;Yu, Y.H.
    • Journal of computational fluids engineering
    • /
    • v.14 no.2
    • /
    • pp.25-31
    • /
    • 2009
  • Numerical optimization of rotor blade airfoils is performed with a response surface method for helicopter rotor. For the baseline airfoils, OA 312, OA 309, and OA 407 airfoils are selected and optimized to improve aerodynamic performance. Aerodynamic coefficients required for the response surface method are obtained by using Navier-Stokes solver with k-$\omega$ Shear Stress Transport turbulence model. An optimized airfoil has increased drag divergence Mach number. The present design optimization method can generate an optimized airfoil with multiple design constraints, whenever it is designed from different baseline airfoils at the same design condition.

Efficient Approximation Method for Constructing Quadratic Response Surface Model

  • Park, Dong-Hoon;Hong, Kyung-Jin;Kim, Min-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.876-888
    • /
    • 2001
  • For a large scaled optimization based on response surface methods, an efficient quadratic approximation method is presented in the context of the trust region model management strategy. If the number of design variables is η, the proposed method requires only 2η+1 design points for one approximation, which are a center point and tow additional axial points within a systematically adjusted trust region. These design points are used to uniquely determine the main effect terms such as the linear and quadratic regression coefficients. A quasi-Newton formula then uses these linear and quadratic coefficients to progressively update the two-factor interaction effect terms as the sequential approximate optimization progresses. In order to show the numerical performance of the proposed method, a typical unconstrained optimization problem and two dynamic response optimization problems with multiple objective are solved. Finally, their optimization results compared with those of the central composite designs (CCD) or the over-determined D-optimality criterion show that the proposed method gives more efficient results than others.

  • PDF

Using the Maximin Criterion in Process Capability Function Approach to Multiple Response Surface Optimization (다중반응표면최적화를 위한 공정능력함수법에서 최소치최대화 기준의 활용에 관한 연구)

  • Jeong, In-Jun
    • Knowledge Management Research
    • /
    • v.20 no.3
    • /
    • pp.39-47
    • /
    • 2019
  • Response surface methodology (RSM) is a group of statistical modeling and optimization methods to improve the quality of design systematically in the quality engineering field. Its final goal is to identify the optimal setting of input variables optimizing a response. RSM is a kind of knowledge management tool since it studies a manufacturing or service process and extracts an important knowledge about it. In a real problem of RSM, it is a quite frequent situation that considers multiple responses simultaneously. To date, many approaches are proposed for solving (i.e., optimizing) a multi-response problem: process capability function approach, desirability function approach, loss function approach, and so on. The process capability function approach first estimates the mean and standard deviation models of each response. Then, it derives an individual process capability function for each response. The overall process capability function is obtained by aggregating the individual process capability function. The optimal setting is given by maximizing the overall process capability function. The existing process capability function methods usually use the arithmetic mean or geometric mean as an aggregation operator. However, these operators do not guarantee the Pareto optimality of their solution. Moreover, they may bring out an unacceptable result in terms of individual process capability function values. In this paper, we propose a maximin-based process capability function method which uses a maximin criterion as an aggregation operator. The proposed method is illustrated through a well-known multiresponse problem.