• Title/Summary/Keyword: Multiple resistance

Search Result 743, Processing Time 0.026 seconds

A proposal and evaluation of a revised GIN method (수정 GIN 기법의 제안 및 검증)

  • Sagong, Myung;Park, Youngjin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.151-165
    • /
    • 2021
  • Grouting, which is applied for the increase of ground strength and the decrease of permeability, is complex process because of several reasons, so the process needs to be elaborated. Injection process in consideration of ground condition and optimization of grouting sequence is essential. In this study, GIN (Grouting Intensity Number), multiple of injected grout volume and pressure, is revised to consider injection pressure reduction and joint opening during grouting process. A revised GIN process is evaluated through a field test. A revised GIN, considering ground condition, injection pressure, follows GIN envelope and produces rational grouting process. The result of a revised GIN reduces permeability of the ground in the order of 10-1~10-2 cm/sec.

Effect of 2% Chlorhexidine Bathing on the Incidence of Hospital-Acquired Infection and Multidrug-Resistant Organisms in Adult Intensive Care Unit Patients: Systematic Review and Meta-Analysis (2% 클로르헥시딘 침상목욕이 중환자실의 의료관련감염과 다제내성균 감염 발생률에 미치는 효과에 대한 체계적 문헌 고찰 및 메타분석)

  • Seo, Jisu;Song, Rhayun
    • Journal of Korean Academy of Nursing
    • /
    • v.51 no.4
    • /
    • pp.414-429
    • /
    • 2021
  • Purpose: This systematic review and meta-analysis analyzed the effects of 2% chlorhexidine bathing on the incidence of hospital-acquired infection (HAI) and multidrug-resistant organisms (MDRO) in adult intensive care units. Methods: PubMed, CINAHL, Cochrane library, and RISS database were systematically searched, and 12 randomized studies were included in the analysis. Comprehensive Meta-Analysis version 3.0 was used to calculate the effect size using the odds ratio (OR) and a 95% confidence interval (CI). Subgroup analysis was performed according to the specific infection and intervention types. Results: In general, 2% chlorhexidine bathing has a significant effect on the incidence of HAI (OR, 0.59; 95% CI, 0.40~0.86) and MDRO (OR, 0.52; 95% CI, 0.34~0.79). Subgroup analyses show 2% chlorhexidine bathing is effective in bloodstream infections (OR, 0.51; 95% CI, 0.39~0.66) but not for urinary tract infections, ventilator-associated pneumonia infections, and Clostridium difficile infections. Moreover, 2% chlorhexidine bathing alone or its combination with other interventions has a significant effect on the incidence of HAI and MDRO (OR, 0.59; 95% CI, 0.38~0.92). Conclusion: This meta-analysis reveals that 2% chlorhexidine bathing significantly reduces the incidence of HAI and MDRO in intensive care units. The effect of 2% chlorhexidine bathing on pediatric patients or patients at general wards should be further assessed as a cost-effective intervention for infection control.

Patterns of Restricted and Repetitive Behaviors in Toddlers and Young Children with Autism Spectrum Disorder

  • Song, Da-Yea;Kim, Dabin;Lee, Hannah J.;Bong, Guiyoung;Han, Jae Hyun;Yoo, Hee Jeong
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.33 no.2
    • /
    • pp.35-40
    • /
    • 2022
  • Objectives: Restricted and repetitive behaviors (RRBs) are a core symptom in the diagnosis of autism spectrum disorder (ASD). The complexity of behavioral patterns has called for the creation of phenotypically homogeneous subgroups among individuals with ASD. The purpose of this study was 1) to investigate the different types of RRBs and 2) to explore whether subgroups created by RRBs would show unique levels of functioning in toddlers and young children with ASD. Methods: A total of 313 children with ASD, aged 12-42 months were included in the analysis. The Autism Diagnostic Interview-Revised was used to obtain information on the different types of RRBs by grouping 15 items into six categories. The Vineland Adaptive Behaviors Scale, a parent-reported questionnaire, was used to measure adaptive functioning. A portion of the children were analyzed separately for verbal-related RRBs based on their expressive language level. Two-step cluster analysis using RRB groups as features was used to create subgroups. Analysis of covariance while covarying for age and language was performed to explore the clinical characteristics of each cluster group. Results: Sensory-related RRBs were the most prevalent, followed by circumscribed interests, interest in objects, resistance to change, and repetitive body movements. A subset of the children was analyzed separately to explore verbal-related RRBs. Four cluster groups were created based on reported RRBs, with multiple RRBs demonstrating significant delays in adaptive functioning. Conclusion: Heterogeneity of RRBs emerges at a young age. The different patterns of RRBs can be used as valuable information to determine developmental trajectories with better implications for treatment approaches.

Nanocomposite Electrode Materials Prepared from Pinus roxburghii and Hematite for Application in Supercapacitors

  • SHRESTHA, Dibyashree
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.219-236
    • /
    • 2022
  • Wood-based nanocomposite electrode materials were synthesized for application in supercapacitors by mixing nanostructured hematite (Fe2O3) with highly porous activated carbon (AC) produced from the wood-waste of Pinus roxburghii. The AC was characterized using various instrumental techniques and the results showed admirable electrochemical properties, such as high surface area and reasonable porosity. Firstly, AC was tested as an electrode material for supercapacitors and it showed a specific capacitance of 59.02 Fg-1 at a current density of 1 Ag-1, cycle life of 84.2% after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 5.1 Wh/kg at a power density of 135 Wkg-1. However, when the AC was composited with different ratios of Fe2O3 (1:1, 2:1, and 1:2), there was an overall improvement in its electrochemical performance. Among the 3 ratios, 2:1 (AC:Fe2O3) had the best specific capacitance of 102.42 Fg-1 at 1 Ag-1, cycle life of 94.4% capacitance after 1,000 cycles (at a current density of 3 Ag-1), and energy density of 8.34 Wh/kg at a power density of 395.15 Wkg-1 in 6 M KOH electrolyte in a 3-electrode experimental setup with a high working voltage of 1.55 V. Furthermore, when Fe2O3 was doubled, 1:2 (AC:Fe2O3), the electrochemical capacitive performance of the electrode twisted and deteriorated due to either the accumulation of Fe2O3 particles within the composite or higher bulk resistance value of pure Fe2O3.

Conceptual Design of Bevel Gear-based Leveling Station for Take-off and Landing of Unmanned Aerial Vehicles (무인 항공기 이착륙을 위한 베벨 기어 기반 수평 유지 스테이션의 개념 설계)

  • Hahm, Jehun;Park, Sanghyun;Jeong, Myungsu;Kim, Sang Ho;Lee, Jaeyoul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.655-662
    • /
    • 2022
  • Recently, with the increase in the use of UAV(unmanned aerial vehicles), research on horizontal maintenance stations that can take off and land in various environments has been actively conducted. These stations can safely land UAV through multiple DOF(degrees of freedom) or at least 2-DOF-based actuator actuation. Among them, many researchers are dealing with the multi-DOF stewart platform due to its high safety. However, the stewart platform requires high-precision control technology because it requires a lot of torque to actuate according to the load action. Therefore, in this paper, to solve the mentioned problem, a bevel gear-based 2-DOF horizontal maintenance station system is proposed. The proposed system is configured to prevent damage due to air resistance when maintaining ships and to install it in a small space. Also, in terms of system configuration, the bevel gear-based horizontal maintenance system has the main advantage of being able to take off and land UAVs of various sizes through the replacement of station pads. The driving of the system consists of a simple form that can control the motor by adjusting the rotation speed of the motor according to the sea waveform.

Triboelectric Nanogenerator based on Mandarin Peel Powder (감귤 과피 분말 기반 마찰전기 나노발전기 제작)

  • Kim, Woo Joong;Kim, Soo Wan;Park, Sung Hyun;Doh, Yang Hoi;Yang, Young Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.5
    • /
    • pp.9-15
    • /
    • 2022
  • Discarded bio-wastes, such as seeds and rinds, cause environmental problems. Multiple studies have recycled bio-wastes as eco-friendly energy sources to solve these problems. This study uses bio-waste to fabricate a mandarin peel powder based triboelectric nanogenerator (MPP-TENG). The MPP-TENG is based on the contact separation mode. It generates an open-circuit voltage and short-circuit current of 156V and 2µA, respectively. In addition, MPP-TENG shows stable operation over continuous 3000s without any deviation in output. Also, the device exhibits maximum power density of 5.3㎼/cm2 when connected to a resistance of 100MΩ. In an energy storage capacity test for 1000s, the MPP-TENG stores an energy of 171.6µJ in a 4.7µF capacitor. The MPP-TENG can power 9 blue LEDs and 54 green lettering LEDs. These results confirm that the MPP-TENG can provide a new avenue for eco-friendly energy harvesting device fabrication.

Resonance analysis of cantilever porous graphene platelet reinforced pipe under external load

  • Huang, Qinghua;Yu, Xinping;Lv, Jun;Zhou, Jilie;Elvenia, Marischa Ray
    • Steel and Composite Structures
    • /
    • v.45 no.3
    • /
    • pp.409-423
    • /
    • 2022
  • Nowadays, there is a high demand for great structural implementation and multifunctionality with excellent mechanical properties. The porous structures reinforced by graphene platelets (GPLs) having valuable properties, such as heat resistance, lightweight, and excellent energy absorption, have been considerably used in different engineering implementations. However, stiffness of porous structures reduces significantly, due to the internal cavities, by adding GPLs into porous medium, effective mechanical properties of the porous structure considerably enhance. This paper is relating to vibration analysis of fluidconveying cantilever porous graphene platelet reinforced (GPLR) pipe with fractional viscoelastic model resting on foundations. A dynamical model of cantilever porous GPLR pipes conveying fluid and resting on a foundation is proposed, and the vibration, natural frequencies and primary resonant of such a system are explored. The pipe body is considered to be composed of GPLR viscoelastic polymeric pipe with porosity in which Halpin-Tsai scheme in conjunction with the fractional viscoelastic model is used to govern the construction relation of nanocomposite pipe. Three different porosity distributions through the pipe thickness are introduced. The harmonic concentrated force is also applied to the pipe and the excitation frequency is close to the first natural frequency. The governing equation for transverse motions of the pipe is derived by the Hamilton principle and then discretized by the Galerkin procedure. In order to obtain the frequency-response equation, the differential equation is solved with the assumption of small displacement, damping coefficient, and excitation amplitude by the multiple scale method. A parametric sensitivity analysis is carried out to reveal the influence of different parameters, such as nanocomposite pipe properties, fluid velocity and nonlinear viscoelastic foundation coefficients, on the primary resonance and linear natural frequency. Results indicate that the GPLs weight fraction porosity coefficient, fractional derivative order and the retardation time have substantial influences on the dynamic response of the system.

Shaping ability and apical debris extrusion after root canal preparation with rotary or reciprocating instruments: a micro-CT study

  • Emmanuel Joao Nogueira Leal da Silva;Sara Gomes de Moura;Carolina Oliveira de Lima;Ana Flavia Almeida Barbosa;Waleska Florentino Misael;Mariane Floriano Lopes Santos Lacerda;Luciana Moura Sassone
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.2
    • /
    • pp.16.1-16.11
    • /
    • 2021
  • Objectives: The aim of this study was to evaluate the shaping ability of the TruShape and Reciproc Blue systems and the apical extrusion of debris after root canal instrumentation. The ProTaper Universal system was used as a reference for comparison. Materials and Methods: Thirty-three mandibular premolars with a single canal were scanned using micro-computed tomography and were matched into 3 groups (n = 11) according to the instrumentation system: TruShape, Reciproc Blue and ProTaper Universal. The teeth were accessed and mounted in an apparatus with agarose gel, which simulated apical resistance provided by the periapical tissue and enabled the collection of apically extruded debris. During root canal preparation, 2.5% sodium hypochlorite was used as an irrigant. The samples were scanned again after instrumentation. The percentage of unprepared area, removed dentin, and volume of apically extruded debris were analyzed. The data were analyzed using 1-way analysis of variance and the Tukey test for multiple comparisons at a 5% significance level. Results: No significant differences in the percentage of unprepared area were observed among the systems (p > 0.05). ProTaper Universal presented a higher percentage of dentin removal than the TruShape and Reciproc Blue systems (p < 0.05). The systems produced similar volumes of apically extruded debris (p > 0.05). Conclusions: All systems caused apically extruded debris, without any significant differences among them. TruShape, Reciproc Blue, and ProTaper Universal presented similar percentages of unprepared area after root canal instrumentation; however, ProTaper Universal was associated with higher dentin removal than the other systems.

The Association of Waist to Height Ratio and Resting Heart Rate with Cardio-metabolic Risk Factors in Korean Postmenopausal Women (한국 폐경 여성의 허리둘레/신장비 및 안정시 심박수와 심혈관-대사 위험요인과의 상관성)

  • Park, Ha-Nui;Byeon, Ji-Yong;Jeon, Justin Y.
    • Exercise Science
    • /
    • v.28 no.1
    • /
    • pp.82-90
    • /
    • 2019
  • PURPOSE: The purpose of this study was to examine the association of waist to height ratio (WHtR) and resting heart rate (RHR) with cardio-metabolic risk factors among Korean postmenopausal women. METHODS: A cross-sectional analysis was performed using the 2015 Korea National Health and Nutrition Examination Survey. The analysis included a total of 1,540 postmenopausal women. RESULTS: Individuals with higher WHtR (>0.56) showed significantly higher glucose, triglyceride, insulin, Homeostatic Model Assessment for Insulin resistance (HOMA-IR), total cholesterol, systolic and diastolic blood pressure compared with ones with lower WHtR (≤0.51). Similar findings were found in those with higher RHR (≥90 bpm) compared with ones with lower RHR (<60 bpm) for glucose and HOMA-IR. When determining the combined effects of WHtR and RHR on the prevalence of metabolic syndrome, individual with WHtR above 0.5 and RHR above 80 bpm showed 10.39 times higher prevalence of metabolic syndrome compared with those with WHtR below 0.5 and RHR below 70 bpm. We further performed multiple linear regression analysis to understand how WHtR and RHR contribute to fasting glucose, and found that both WHtR and RHR contribute to fasting glucose levels independent of age, education level, marital status and income level. CONCLUSIONS: The current study showed that the WHtR and RHR are associated with cardio-metabolic risk factor and prevalence of metabolic syndrome in Korean postmenopausal women.

Measurement strategy of a system parameters for the PI current control of the A.C. motor (교류 전동기의 PI 전류제어를 위한 시스템 파라미터 계측법)

  • Jung-Keyng Choi
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.5
    • /
    • pp.223-229
    • /
    • 2023
  • This Paper propose the method that measure main system parameters for PI(proportional-integral) current control of a.c. motor adopting the vector control technique. For current control, the PI control input is could be tuning by several selective methods. Among the several methods, the method that using the main system parameters, wire resistance and inductance, are frequently used. In this study, the technique to dissect and measure these two system parameters through the results of simple feedback control. This analytic measurement method is measuring parameters step by step dissecting the results of P control using simple proportional feedback gain about the unit step or multiple step reference command. This strategy is an real time analytic measurement method that calculate current control gains of torque component and flux component both for vector control of A.C. motor without introducing the further measurement circuits and complex measuring algorithms.