• 제목/요약/키워드: Multiple regression model

Search Result 2,549, Processing Time 0.033 seconds

N-supplying Capability Evaluation of Corn Field Soils in Pennsylvania (Pennsylvania주 옥수수 재배 토양의 질소공급능력 평가)

  • Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.359-367
    • /
    • 1998
  • In order to determine the nitrogen supplying capabilities (NSC) of corn fields, 47 field experiments were performed in Pennsylvania over 3 year from 1986 and NSCs were estimated by the regression analysis with chemical properties and soil attributes. Although the content of $NO_3-N$ in soil showed the best correlation with NSC ($R^2=0.518$), the standardized partial regression coefficient of $NO_3-N$ for NSC was 0.52, with some variations over the years. This value was slightly higher than those of the other properties which ranged from 0.001 to 0.351. Multiple linear regression with soil attributes for the evaluation of NSC was better than simple regression with $NO_3-N$. The coefficient of determination ($R^2$) for the evaluation of NSC was gradually increased; 0.599 with selected chemical properties, 0.698 with quantitative attributes(chemical properties and depth of Ap horizon), and 0.839 with quantitative and selected qualitative soil attributes. Consequently, in order to evaluate NSC, analysis by multiple linear regression with soil attributes was more reliable and better model than by the simple regression model.

  • PDF

Testing for a multiple change point residual variance in regression model (잔차 분산을 이용한 선형회귀모형의 다중전환점 검정)

  • Lee, In-Suk;Kim, Jong-Tae;Lee, Kum-Ja
    • Journal of the Korean Data and Information Science Society
    • /
    • v.12 no.1
    • /
    • pp.27-40
    • /
    • 2001
  • The purpose of this study is to test a multiple change point in the regression model with the passage of time, using the estimated residual variance figure suggested by Gasser, Sroka and Jennen - Steinmez (GSJS). As a result of the simulation, it is showed that there is a jump change of the estimated residual variance figure at that time of change point. The way to analyse a intuitive multiple change point through graphics is more effective and accurate than any other existing ways.

  • PDF

Multiple linear regression and fuzzy linear regression based assessment of postseismic structural damage indices

  • Fani I. Gkountakou;Anaxagoras Elenas;Basil K. Papadopoulos
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.429-437
    • /
    • 2023
  • This paper studied the prediction of structural damage indices to buildings after earthquake occurrence using Multiple Linear Regression (MLR) and Fuzzy Linear Regression (FLR) methods. Particularly, the structural damage degree, represented by the Maximum Inter Story Drift Ratio (MISDR), is an essential factor that ensures the safety of the building. Thus, the seismic response of a steel building was evaluated, utilizing 65 seismic accelerograms as input signals. Among the several response quantities, the focus is on the MISDR, which expresses the postseismic damage status. Using MLR and FLR methods and comparing the outputs with the corresponding evaluated by nonlinear dynamic analyses, it was concluded that the FLR method had the most accurate prediction results in contrast to the MLR method. A blind prediction applying a set of another 10 artificial accelerograms also examined the model's effectiveness. The results revealed that the use of the FLR method had the smallest average percentage error level for every set of applied accelerograms, and thus it is a suitable modeling tool in earthquake engineering.

A Study of the Nonlinear Characteristics Improvement for a Electronic Scale using Multiple Regression Analysis (다항식 회귀분석을 이용한 전자저울의 비선형 특성 개선 연구)

  • Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.6
    • /
    • pp.1-6
    • /
    • 2019
  • In this study, the development of a weight estimation model of electronic scale with nonlinear characteristics is presented using polynomial regression analysis. The output voltage of the load cell was measured directly using the reference mass. And a polynomial regression model was obtained using the matrix and curve fitting function of MS Office Excel. The weight was measured in 100g units using a load cell electronic scale measuring up to 5kg and the polynomial regression model was obtained. The error was calculated for simple($1^{st}$), $2^{nd}$ and $3^{rd}$ order polynomial regression. To analyze the suitability of the regression function for each model, the coefficient of determination was presented to indicate the correlation between the estimated mass and the measured data. Using the third order polynomial model proposed here, a very accurate model was obtained with a standard deviation of 10g and the determinant coefficient of 1.0. Based on the theory of multi regression model presented here, it can be used in various statistical researches such as weather forecast, new drug development and economic indicators analysis using logistic regression analysis, which has been widely used in artificial intelligence fields.

Machine Learning Approach to Blood Stasis Pattern Identification Based on Self-reported Symptoms (기계학습을 적용한 자기보고 증상 기반의 어혈 변증 모델 구축)

  • Kim, Hyunho;Yang, Seung-Bum;Kang, Yeonseok;Park, Young-Bae;Kim, Jae-Hyo
    • Korean Journal of Acupuncture
    • /
    • v.33 no.3
    • /
    • pp.102-113
    • /
    • 2016
  • Objectives : This study is aimed at developing and discussing the prediction model of blood stasis pattern of traditional Korean medicine(TKM) using machine learning algorithms: multiple logistic regression and decision tree model. Methods : First, we reviewed the blood stasis(BS) questionnaires of Korean, Chinese, and Japanese version to make a integrated BS questionnaire of patient-reported outcomes. Through a human subject research, patients-reported BS symptoms data were acquired. Next, experts decisions of 5 Korean medicine doctor were also acquired, and supervised learning models were developed using multiple logistic regression and decision tree. Results : Integrated BS questionnaire with 24 items was developed. Multiple logistic regression models with accuracy of 0.92(male) and 0.95(female) validated by 10-folds cross-validation were constructed. By decision tree modeling methods, male model with 8 decision node and female model with 6 decision node were made. In the both models, symptoms of 'recent physical trauma', 'chest pain', 'numbness', and 'menstrual disorder(female only)' were considered as important factors. Conclusions : Because machine learning, especially supervised learning, can reveal and suggest important or essential factors among the very various symptoms making up a pattern identification, it can be a very useful tool in researching diagnostics of TKM. With a proper patient-reported outcomes or well-structured database, it can also be applied to a pre-screening solutions of healthcare system in Mibyoung stage.

Development of a soil total carbon prediction model using a multiple regression analysis method

  • Jun-Hyuk, Yoo;Jwa-Kyoung, Sung;Deogratius, Luyima;Taek-Keun, Oh;Jaesung, Cho
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.891-897
    • /
    • 2021
  • There is a need for a technology that can quickly and accurately analyze soil carbon contents. Existing soil carbon analysis methods are cumbersome in terms of professional manpower requirements, time, and cost. It is against this background that the present study leverages the soil physical properties of color and water content levels to develop a model capable of predicting the carbon content of soil sample. To predict the total carbon content of soil, the RGB values, water content of the soil, and lux levels were analyzed and used as statistical data. However, when R, G, and B with high correlations were all included in a multiple regression analysis as independent variables, a high level of multicollinearity was noted and G was thus excluded from the model. The estimates showed that the estimation coefficients for all independent variables were statistically significant at a significance level of 1%. The elastic values of R and B for the soil carbon content, which are of major interest in this study, were -2.90 and 1.47, respectively, showing that a 1% increase in the R value was correlated with a 2.90% decrease in the carbon content, whereas a 1% increase in the B value tallied with a 1.47% increase in the carbon content. Coefficient of determination (R2), root mean square error (RMSE), and mean absolute percentage error (MAPE) methods were used for regression verification, and calibration samples showed higher accuracy than the validation samples in terms of R2 and MAPE.

DETECTION OF OUTLIERS IN WEIGHTED LEAST SQUARES REGRESSION

  • Shon, Bang-Yong;Kim, Guk-Boh
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.501-512
    • /
    • 1997
  • In multiple linear regression model we have presupposed assumptions (independence normality variance homogeneity and so on) on error term. When case weights are given because of variance heterogeneity we can estimate efficiently regression parameter using weighted least squares estimator. Unfortunately this estimator is sen-sitive to outliers like ordinary least squares estimator. Thus in this paper we proposed some statistics for detection of outliers in weighted least squares regression.

Parameter Calibration of Storage Function Model and Flood Forecasting (2) Comparative Study on the Flood Forecasting Methods (저류함수모형의 매개변수 보정과 홍수예측 (2) 홍수예측방법의 비교 연구)

  • Kim, Bum Jun;Song, Jae Hyun;Kim, Hung Soo;Hong, Il Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1B
    • /
    • pp.39-50
    • /
    • 2006
  • The flood control offices of main rivers have used a storage function model to forecast flood stage in Korea and studies of flood forecasting actively have been done even now. On this account, the storage function model, which is used in flood control office, regression models and artificial neural network model are applied into flood forecasting of study watershed in this paper. The result obtained by each method are analyzed for the comparative study. In case of storage function model, this paper uses the representative parameters of the flood control offices and the optimized parameters. Regression coefficients are obtained by regression analysis and neural network is trained by backpropagation algorithm after selecting four events between 1995 to 2001. As a result of this study, it is shown that the optimized parameters are superior to the representative parameters for flood forecasting. The results obtained by multiple, robust, stepwise regression analysis, one of the regression methods, show very good forecasts. Although the artificial neural network model shows less exact results than the regression model, it can be efficient way to produce a good forecasts.

Evaluation of Sigumjang Aroma by Stepwise Multiple Regression Analysis of Gas Chromatographic Profiles

  • Choi, Ung-Kyu;Kwon, O-Jun;Lee, Eun-Jeong;Son, Dong-Hwa;Cho, Young-Je;Im, Moo-Hyeog;Chung, Yung-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.4
    • /
    • pp.476-481
    • /
    • 2000
  • A linear correlation, by the stepwise multiple regression analysis, was found between the sensory test of Sigumjang aroma and the gas chromatographic data which were transformed with logarithm. GC data is the most objective method to evaluate Sigumjang aroma. A multiple correlation coefficient and a determination coefficient of more than 0.9 were obtained at the 9th and 13th steps, respectively. At step 31, the coefficient of determination level of 0.95 was attained. The accuracy of its estimation became higher as the number of the variables entered into the regression model increased. Over 90% of the Sigumjang aroma was explained by 13 compounds indentified on GC. The contributing proportion of the peak 26 was the highest followed by peaks 57 (9.27%), 29 (7.51%), 54 (6.01%), 8 (5.99%), 49 (4.97%), and 13 (4.11%).

  • PDF

Analyses of Power Consumption of the Heat Pump Dryer in the Automobile Drying Process by using the Principal Component Analysis and Multiple Regression (주성분 분석과 다중회귀모형을 사용한 자동차 건조 공정의 히트펌프 건조기 소모 전력 분석)

  • Lee, Chang-Yong;Song, Gensoo;Kim, Jinho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.143-151
    • /
    • 2015
  • In this paper, we investigate how the power consumption of a heat pump dryer depends on various factors in the drying process by analyzing variables that affect the power consumption. Since there are in general many variables that affect the power consumption, for a feasible analysis, we utilize the principal component analysis to reduce the number of variables (or dimensionality) to two or three. We find that the first component is correlated positively to the entrance temperature of various devices such as compressor, expander, evaporator, and the second, negatively to condenser. We then model the power consumption as a multiple regression with two and/or three transformed variables of the selected principal components. We find that fitted value from the multiple regression explains 80~90% of the observed value of the power consumption. This results can be applied to a more elaborate control of the power consumption in the heat pump dryer.