• Title/Summary/Keyword: Multiple nozzle

Search Result 70, Processing Time 0.027 seconds

A study of single-phase liquid cooling by multiple nozzle impingement on the smooth and extended surfaces (다중노즐에 의해 분사된 평면 및 확장면의 단상액체냉각에 관한 연구)

  • 소영국;박복춘;백병준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.743-752
    • /
    • 1998
  • Experiments were performed to characterize single-phase heat transfer behavior of submerged liquid jet with multiple nozzle normally impinging on the smooth and extended surfaces. Arrays of 9 and 36 nozzles were used, with diameters of 0.5 to 2.0mm providing nozzle area ratio (AR) from 0.05 to 0.2. The square pin fin arrays were chosen as extended surfaces and the effects of geometrical parameters such as fin height, the ratio of fin width to channel width on heat transfer enhancement were examined. Single nozzle characteristics were also evaluated for comparison. The results clearly showed that heat transfer enhancement could be realized by using multiple nozzles at the constant volume flow rate. The average Nusselt number of multiple nozzle impingement on the smooth surface was correlated by the following equation : Nu/$Pr\frac{1}{3}=0.94 Re^{0.56}N^{-0.12}AR^{0.50}$The average heat transfer coefficients of multiple nozzle impingement on the extended surfaces decreased with increasing fin height and the ratio of fin width to channel width. The effectiveness of ex-tended surfaces ranged from 1.5 to 3.5 depending on the fin height, the ratio of fin width to channel width of pin fin arrays, nozzle number and nozzle area ratio.

  • PDF

An experimental study on the heat transfer augmentation by using the multiple orifice nozzle (다중 오리피스 노즐을 이용한 충돌분류의 열전달 향상에 관한 실험적 연구)

  • 김예용;정기호;김귀순;서태범
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.5
    • /
    • pp.647-657
    • /
    • 1999
  • An experimental study has been peformed to investigate the heat transfer characteristics of impinging jets with multiple orifice nozzles. Four different shapes of multiple orifice nozzle were tested to improve the heat transfer characteristics of impinging jet. Heat transfer coefficients were obtained by using transient and steady method based on the liquid crystal thermography, and both methods showed very similar results. The effects of multiple orifice nozzles on the heat transfer characteristics of impinging jets were discussed in detail. The results showed that multiple orifice nozzles improved the heat transfer characteristics of impinging jet. Especially, heat transfer coefficients around stagnation region of impinging jets were highly increased.

  • PDF

Experiments on the Flow Characteristics of Circular Multiple Jets Arrayed Circumferentially (원주상으로 배열된 다중 원형 제트의 유동 특성)

  • Jin, Hak-Su;Kim, Jeong-Soo;Choi, Jong-Wook;Kim, Sung-Cho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.306-312
    • /
    • 2007
  • This paper describes the flow characteristics of circular multiple jet investigated by hot-wire anemometry. The nozzle arrays were classified into two cases; 6- or 7-nozzle located circumferentially in equal interval without or with a central jet. The flow field was measured according to the number of nozzles when the Reynolds number based on the nozzle exit is about $10^4$. Mean velocity, Reynolds shear stress and turbulent kinetic energy were investigated in the downstream of jets. The Tollmien's theory holds for downstream only when a nozzle locates at the center. Jet interaction is influenced due to with or without a center nozzle. In addition, the two-dimensional numerical computation was conducted for 3-nozzle case to obtain the general flow structure near the nozzle exit, which verifies the formation of the recirculation region with captive vortices, that is, the evidence of the interaction between jets.

Electrohydrodynamic Process Supplemented by Multiple-Nozzle and Auxiliary Electrodes for Fabricating PCL Nanofibers (멀티노즐/보조전극-Electrohydrodynamic 공정을 통한 PCL 나노파이버 제작)

  • Yoon, Hyeon;Kim, Geun-Hyung;Kim, Wan-Doo
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.334-339
    • /
    • 2008
  • Recently electro spinning is a widely used simple technique to prepared micro- to nanometer-sized fiber of various polymers. In general, a normal multiple-nozzle electro spinning system has been difficult to achieve high production-rate fabricating micro/nanofibers due to the interference of electric field between individual nozzles in the process. To reduce the interference effect of electric field between nozzles, we developed a multi-nozzle electrospinning system supplemented with auxiliary electrodes. Poly($\varepsilon$-carprolactone)(PCL), which has good mechanical property and biocompatibility, was electrospun by the multi-nozzle electro spinning system. Electrospinnability, product rate, and size uniformity of spun fibers for the system with and without auxiliary electrodes were characterized. As a result, the multi-nozzle electrospinning system supplemented with auxiliary electrodes provides excellently stable processability and showed high mass productivity of PCL-nanofibers relative to a normal multi-nozzle electro spinning system.

Characteristics of methane non-premixed multiple jet flames (메탄 비예혼합 상호작용 화염의 특성)

  • Lee, Byeong-Jun;Kim, Jin-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1365-1370
    • /
    • 2004
  • It has been reported that if eight small nozzles are arranged along the circle of 40 $^{\sim}$ 72 times the diameter of single nozzle, the propane non-premixed flames are not extinguished even in 200m/s, In this research, experiments were extended to the methane flame. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric center. The space between nozzles, s, the exit velocity and the role of the jet from the center nozzle were considered. On the contrary to the propane non-premixed case, the maximum blowout velocity for the methane diffusion flame was achieved when small amount of fuel is supplied through the center nozzle and s/d equals around 21. In the laminar region, the flame attached at the center nozzle anchored the outer lifted flames.

  • PDF

Characteristics of Methane Non-Premixed Multiple Jet Flames (메탄 비예혼합 상호작용 화염의 특성)

  • Kim Jin Hyun;Lee Byeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.3 s.234
    • /
    • pp.349-355
    • /
    • 2005
  • It has been reported that propane non-premixed interacting flames are not extinguished even in 210m/s if eight small nozzles are arranged along the imaginary circle of 40 ~ 72 times the diameter of single nozzle. In this research, experiments were extended to the methane flame. Nine nozzles were used- eight was evenly located along the perimeter of the imaginary circle and one at the geometric center. The space between nozzles, s, the exit velocity and the role of the jet from the center nozzle were considered. On the contrary to the propane non-premixed flame, small amount of fuel fed through the center nozzle makes the methane diffusion flame stable even at the choking conditions. In the laminar region, the flame at the center nozzle anchored the outer lifted flames.

Transient characteristics of a rotating multi-packet blade system (회전하는 멀티 패킷 블레이드 시스템의 과도특성)

  • Kwon, Seungmin;Yoo, Hong Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.463-463
    • /
    • 2014
  • Multi-packet blade systems usually undergo multiple nozzle excitations during operation. For the design of multi-packet blade systems undergoing multiple nozzle excitations, transient characteristics around an operating frequency and resonance frequencies should be identified. In this study the equations of motion of multi-packet blade systems undergoes multiple nozzle excitations are derived. The reliability of the derived equations is verified by obtaining responses at resonance frequencies. Then, using the model, the effects of system parameters on the transient characteristics of the system are investigated.

  • PDF

Effect of Lean-rich Fuel Staging to the Multiple Jet Flames on the Blowout Velocity (과농-희박연료가 교차로 공급되는 상호작용 화염의 화염날림에 관한 연구)

  • Lee, Byeong-Jun;Park, Kyung-Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.7-14
    • /
    • 2008
  • It has been reported that partially premixed interacting flame could be sustained till sonic exit velocities if eight small nozzles are arranged optimally and one nozzle on the center is fed small amount of fuel. But the equivalence ratios in this experiments were 20-60. In this research, experiments were conducted to know the effects of lean-rich staging in multiple jet flames on the blowout velocity. The fuel mole tractions in the fuel-air mixture, the nozzle exit velocity and the diameter between adjacent nozzles were alternatively changed. When the lower mole fraction fuel was fed to the nozzles located near the center and small amount of fuel to the center nozzle, flame was not extinguished even at the nozzle exit velocity of 200m/s. Also the interacting flame could be sustained till that velocity when four small size nozzles for lean mixture were located within the arrangement of four nozzles for rich mixture and configured optimally.

An Efficient PCB Assembly Method by Multiple Adsorption with Gantry Type SMD using Simulation (갠트리 타입 SMD에서 동시 흡착에 의한 효율적 PCB 조립 방안의 시뮬레이션 연구)

  • Moon, Gee-Ju;Kim, Gwang-Pil
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.59-67
    • /
    • 2006
  • An efficient PCB assembly method with Gantry type machine is developed and proposed in this paper to improve system productivity. Nozzle changes at Gantry type machine is the major reason causing lower system performance instead of header and slot movements on the other type machines. The problem is attacked by maximizing multiple adsorptions to reduce the number of necessary nozzle changes with Gantry type machine. It is designed to reduce the assembly time per PCB with multiple adsorptions based upon the positions of feeders and nozzles. A simulation model is constructed to show the effectiveness of the suggested heuristic and necessarily a comparison study is followed with different methods on selection of next assembly feeder and nozzle with various cases.

  • PDF