• Title/Summary/Keyword: Multiple modulus

Search Result 117, Processing Time 0.024 seconds

Impedance Spectroscopy Models for X5R Multilayer Ceramic Capacitors

  • Lee, Jong-Sook;Shin, Eui-Chol;Shin, Dong-Kyu;Kim, Yong;Ahn, Pyung-An;Seo, Hyun-Ho;Jo, Jung-Mo;Kim, Jee-Hoon;Kim, Gye-Rok;Kim, Young-Hun;Park, Ji-Young;Kim, Chang-Hoon;Hong, Jeong-Oh;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.5
    • /
    • pp.475-483
    • /
    • 2012
  • High capacitance X5R MLCCs based on $BaTiO_3$ ceramic dielectric layers exhibit a single broad, asymmetric arc shape impedance and modulus response over the wide frequency range between 1 MHz to 0.01 Hz. Analysis according to the conventional brick-layer model for polycrystalline conductors employing a series connection of multiple RC parallel circuits leads to parameters associated with large errors and of little physical significance. A new parametric impedance model is shown to satisfactorily describe the experimental spectra, which is a parallel network of one resistor R representing the DC conductivity thermally activated by 1.32 eV, one ideal capacitor C exactly representing bulk capacitance, and a constant phase element (CPE) Q with complex capacitance $A(i{\omega})^{{\alpha}-1}$ with ${\alpha}$ close to 2/3 and A thermally activated by 0.45 eV or ca. 1/3 of activation energy of DC conductivity. The feature strongly indicate the CK1 model by J. R. Macdonald, where the CPE with 2/3 power-law exponent represents the polarization effects originating from mobile charge carriers. The CPE term is suggested to be directly related to the trapping of the electronic charge carriers and indirectly related to the ionic defects responsible for the insulation resistance degradation.

The Performance Comparison of MMA and S-MMA Adaptive Equalization Algorithm for QAM Signal (QAM 신호에대한 MMA와 S-MMA 적응 등화 알고리즘의 성능 비교)

  • Kang, Dae-Soo;Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • This paper deals with the performance comparison of blind adaptive equalization algorithm, the MMA and S-MMA, that is used for compensation of the amplitude and phase distortion simultaneously which occurs in the time dispersive channel. The present CMA algorithm is possible to compensates the amplitude only, but not in phase, so it needs to the another additional circuit for compensating the phase. In order to overcoming the abovemensioned shorthand, the improved cost function is applied to the MMA algorithm. In MMA algorithm, the error is consists of the dispersion constant only, but in S-MMA, the error is consists of the dispersion constant considering the output of decision device (sliced symbol) in order to updating the tap coefficients. By using the two kind error signal, the adaptive equalization algorithm has different performance. In this paper, we compare to the adaptive equalization algorithm performance by using the recovered constellation, residual isi, MD (Maximum Distortion) and SER as a index when the transmitting signal is 16 and 64-QAM and then passing through the same communication channel. As a result of simulation, the S-MMA can improving the Roburstness in SER performance compared to the MMA in the high order QAM signal.

Performance Improvement of MMA Adaptive Equalization Algorithm by using the Constellation Reduction in QAM Signal (QAM 신호에서 Constellation Reduction을 이용한 MMA 적응 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.103-109
    • /
    • 2014
  • This paper related with the CR-MMA which is possible to improving the equalization performance by applying the concept of constellation reduction in the MMA adaptive equalization alogorithm in order to reduce the intersymbol interference that is occurred in the nonlinear communication channel. In the updating process of MMA adaptive equalizer, the error signal is being obtained by using the equalizer output, and the performance will be degraded by the increase the error signal in the high order QAM constellation. But by using the constellation reduction, the high order QAM signal will be changed to the 4-QAM signal constellation and then the error signal will be obtained. By doing so, the error signal will be minimized and it is possible to improve the equalization performance in the high order QAM transmitted signal. The Computer simulation was performed in order to compare the performance of the proposed CR-MMA algorithm and original MMA algorithm in the same communication channel and noise environment. For this, the recoverd signal constellation which is the output of equalizer, residual isi and MD (Maximum Distortion) learning curve which is represents the convergence performance and SER which is represents the roburstness of noise were used. As a result of simulation, the CR-MMA has more superior to the MMA. And it was confirmed that the CR-MMA has roburstness to the noise in the SER performance.

Removal of Residual Stress and In-vitro Recording Test in Polymer-based 3D Neural Probe (폴리머 기반 3차원 뉴런 프로브의 잔류 스트레스 제거 및 생체 외 신호 측정)

  • Nam, Min-Woo;Lim, Chun-Bae;Lee, Kee-Keun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.2
    • /
    • pp.33-42
    • /
    • 2009
  • A polymer-based flexible neural probe was fabricated for monitoring of neural activities from a brain. To improve the insertion stiffness, a 5 ${\mu}m$ thick biocompatible Au layer was electroplated between the top and bottom polymer layers. The developed neural probe penetrated a gel whose elastic modulus is similar to that of a live brain tissue without any fracture, To minimize mechanical residual stress and bending from the probe, two new methods were employed: (1) use of a thermal annealing process after completing the device and (2) incorporation of multiple different layers to compensate the residual stress between top and bottom layers. Mechanical bending around the probe tip was clearly removed after employing the two processes. In electrical test, the developed probe showed a proper impedance value to record neural signals from a brain and the result remained the same for 72 hours. In simple in-vitro probe characterization, the probe showed a great removal of residual stress and an excellent recording performance. The in-vitro recording results did not change even after 1 week, suggesting that this electrode has the potential for great recording from neuron firing and long-term implant performance.

  • PDF

Effect of Long-Term Load on Flexural Crack Widths in FRP-Reinforced Concrete Beams (장기하중이 FRP-보강근 콘크리트 보의 휨균열폭에 미치는 영향)

  • Choi, Bong-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.694-701
    • /
    • 2018
  • Larger crack widths can be observed more in FRP-reinforced concrete members than in steel-reinforced concrete members as a result of the lower elastic modulus and bond strength of FRP reinforcement. The ACI 440.1R-15 design guide provides equations derived as the maximum bar spacing to control the crack widths indirectly. On the other hand, it is not concerned with long-term effects on the crack control design provisions. This study provides suggestions for how to incorporate time-dependent effects into the crack width equation. The work presented herein includes the results from 8 beams composed of four rectangular and T-shaped FRP-reinforced concrete beams tested for one year under four-point bending. Over a one year period, the crack widths increased as much as 2.6~3.0 times in GFRP and AFRP-reinforced specimens and 1.1~1.4 times in the CFRP-reinforced specimens compared to steel-reinforced specimens. In addition, the average multiple for crack width at one year relative to the instantaneous crack width upon the application of the sustained load was 2.4 in the specimens with a rectangular section and 3.1 in the specimens with a T-shaped section. As a result, it is recommended conservatively that the time-dependent coefficient be taken as 2.5 for the rectangular beams and 3.5 for T-beams.

Catalytic Effects on Graphitized Carbon Fibers of Graphitization Catalysts Introduced during Hot-Water Stretching (열수 연신시 흑연화 촉매 도입에 따른 탄소섬유의 흑연화 촉진효과)

  • Hyun-Jae Cho;Hye Rin Lee;Byoung-Suhk, Kim;Yong-Sik, Chung
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.162-169
    • /
    • 2024
  • In this study, PAN(polyacrylonitrile)-based precursor fibers were produced through a wet-spinning process, and their morphologies and graphitization behavior were investigated in the presence of two graphitization catalysts (Ca, Ni). The graphitization catalysts were introduced into the formed pores during hot-water stretching of wet-spun PAN-based precursor fibers. The catalytic effects of graphitization catalysts were examined through crystal structure and Raman analysis. At a relatively low temperature of 1500℃, the graphitization was not significantly affected, whereas at a high temperature of 2400℃, the obtained ID/IG value of graphite fiber (GF-Ni100) was decreased by about twice (~0.28) compared to the untreated fibers (GF-AS~0.54). By comparing the ID/IG values (GF-Ca100~0.42: GF-Ni100~0.28) of Ca and Ni graphitization catalyst, it was found that the degree of graphitization of Ni graphitization catalyst showed higher influence than that of Ca graphitization catalyst. Moreover, 2D band was also observed, indicating that the graphite plane structures composed of multiple layers were developed. XRD results confirmed that the crystal inter-planar distance (d002) of the graphite crystal was slightly decreased after the treatment with the graphitization catalyst, But, the crystal size of Ca-treated graphite fiber (GF-Ca100) was increased by up to ~5 nm.

Investigation of Tensile Properties in Edge Modified Graphene Oxide(E-GO)/Epoxy Nano Composites (측면 치환 그래핀/에폭시 나노복합재료의 인장 특성 평가)

  • Donghyeon Lee;Ga In Cho;Hyung Mi Lim;Mantae Kim;Dong-Jun Kwon
    • Composites Research
    • /
    • v.37 no.3
    • /
    • pp.209-214
    • /
    • 2024
  • Graphene oxide (GO), known for its high stiffness, thermal conductivity, and electrical conductivity, is being utilized as a reinforcement in nanocomposite materials. This study evaluates the mechanical properties of epoxy nanocomposites incorporating GO and edge modified GO (E-GO), which has hydroxyl groups substituted only on its edges. GO/E-GO was uniformly dispersed in epoxy resin using ultrasonic dispersion, and mechanical properties were assessed through tensile testing. The results showed that the addition of nanoparticles increased both tensile strength and toughness. The tensile strength of the epoxy without nanoparticles was 74.4 MPa, while the highest tensile strength of 90.7 MPa was observed with 0.3 wt% E-GO. Additionally, the modulus increased from 2.55 GPa to 3.53 GPa with the addition of nanoparticles. Field emission scanning electron microscopy of the fracture surface revealed that the growth of cracks was impeded by the nanoparticles, preventing complete fracture and causing the cracks to split in multiple directions. E-GO, with surface treatment only on the edges, exhibited higher mechanical properties than GO due to its superior dispersion and surface treatment effects. These results highlight the importance of nanoparticle surface treatment in developing high-performance nanocomposite materials.