• Title/Summary/Keyword: Multiple feature detection

Search Result 163, Processing Time 0.024 seconds

Multi-Time Window Feature Extraction Technique for Anger Detection in Gait Data

  • Beom Kwon;Taegeun Oh
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.4
    • /
    • pp.41-51
    • /
    • 2023
  • In this paper, we propose a technique of multi-time window feature extraction for anger detection in gait data. In the previous gait-based emotion recognition methods, the pedestrian's stride, time taken for one stride, walking speed, and forward tilt angles of the neck and thorax are calculated. Then, minimum, mean, and maximum values are calculated for the entire interval to use them as features. However, each feature does not always change uniformly over the entire interval but sometimes changes locally. Therefore, we propose a multi-time window feature extraction technique that can extract both global and local features, from long-term to short-term. In addition, we also propose an ensemble model that consists of multiple classifiers. Each classifier is trained with features extracted from different multi-time windows. To verify the effectiveness of the proposed feature extraction technique and ensemble model, a public three-dimensional gait dataset was used. The simulation results demonstrate that the proposed ensemble model achieves the best performance compared to machine learning models trained with existing feature extraction techniques for four performance evaluation metrics.

Development of machine learning model for automatic ELM-burst detection without hyperparameter adjustment in KSTAR tokamak

  • Jiheon Song;Semin Joung;Young-Chul Ghim;Sang-hee Hahn;Juhyeok Jang;Jungpyo Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.100-108
    • /
    • 2023
  • In this study, a neural network model inspired by a one-dimensional convolution U-net is developed to automatically accelerate edge localized mode (ELM) detection from big diagnostic data of fusion devices and increase the detection accuracy regardless of the hyperparameter setting. This model recognizes the input signal patterns and overcomes the problems of existing detection algorithms, such as the prominence algorithm and those of differential methods with high sensitivity for the threshold and signal intensity. To train the model, 10 sets of discharge radiation data from the KSTAR are used and sliced into 11091 inputs of length 12 ms, of which 20% are used for validation. According to the receiver operating characteristic curves, our model shows a positive prediction rate and a true prediction rate of approximately 90% each, which is comparable to the best detection performance afforded by other algorithms using their optimized hyperparameters. The accurate and automatic ELM-burst detection methodology used in our model can be beneficial for determining plasma properties, such as the ELM frequency from big data measured in multiple experiments using machines from the KSTAR device and ITER. Additionally, it is applicable to feature detection in the time-series data of other engineering fields.

Physical interpretation of concrete crack images from feature estimation and classification

  • Koh, Eunbyul;Jin, Seung-Seop;Kim, Robin Eunju
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.385-395
    • /
    • 2022
  • Detecting cracks on a concrete structure is crucial for structural maintenance, a crack being an indicator of possible damage. Conventional crack detection methods which include visual inspection and non-destructive equipment, are typically limited to a small region and require time-consuming processes. Recently, to reduce the human intervention in the inspections, various researchers have sought computer vision-based crack analyses: One class is filter-based methods, which effectively transforms the image to detect crack edges. The other class is using deep-learning algorithms. For example, convolutional neural networks have shown high precision in identifying cracks in an image. However, when the objective is to classify not only the existence of crack but also the types of cracks, only a few studies have been reported, limiting their practical use. Thus, the presented study develops an image processing procedure that detects cracks and classifies crack types; whether the image contains a crazing-type, single crack, or multiple cracks. The properties and steps in the algorithm have been developed using field-obtained images. Subsequently, the algorithm is validated from additional 227 images obtained from an open database. For test datasets, the proposed algorithm showed accuracy of 92.8% in average. In summary, the developed algorithm can precisely classify crazing-type images, while some single crack images may misclassify into multiple cracks, yielding conservative results. As a result, the successful results of the presented study show potentials of using vision-based technologies for providing crack information with reduced human intervention.

CoNSIST : Consist of New methodologies on AASIST, leveraging Squeeze-and-Excitation, Positional Encoding, and Re-formulated HS-GAL

  • Jae-Hoon Ha;Joo-Won Mun;Sang-Yup Lee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.692-695
    • /
    • 2024
  • With the recent advancements in artificial intelligence (AI), the performance of deep learning-based audio deepfake technology has significantly improved. This technology has been exploited for criminal activities, leading to various cases of victimization. To prevent such illicit outcomes, this paper proposes a deep learning-based audio deepfake detection model. In this study, we propose CoNSIST, an improved audio deepfake detection model, which incorporates three additional components into the graph-based end-to-end model AASIST: (i) Squeeze and Excitation, (ii) Positional Encoding, and (iii) Reformulated HS-GAL, This incorporation is expected to enable more effective feature extraction, elimination of unnecessary operations, and consideration of more diverse information, thereby improving the performance of the original AASIST. The results of multiple experiments indicate that CoNSIST has enhanced the performance of audio deepfake detection compared to existing models.

Anomaly detection of isolating switch based on single shot multibox detector and improved frame differencing

  • Duan, Yuanfeng;Zhu, Qi;Zhang, Hongmei;Wei, Wei;Yun, Chung Bang
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.811-825
    • /
    • 2021
  • High-voltage isolating switches play a paramount role in ensuring the safety of power supply systems. However, their exposure to outdoor environmental conditions may cause serious physical defects, which may result in great risk to power supply systems and society. Image processing-based methods have been used for anomaly detection. However, their accuracy is affected by numerous uncertainties due to manually extracted features, which makes the anomaly detection of isolating switches still challenging. In this paper, a vision-based anomaly detection method for isolating switches, which uses the rotational angle of the switch system for more accurate and direct anomaly detection with the help of deep learning (DL) and image processing methods (Single Shot Multibox Detector (SSD), improved frame differencing method, and Hough transform), is proposed. The SSD is a deep learning method for object classification and localization. In addition, an improved frame differencing method is introduced for better feature extraction and a hough transform method is adopted for rotational angle calculation. A number of experiments are conducted for anomaly detection of single and multiple switches using video frames. The results of the experiments demonstrate that the SSD outperforms the You-Only-Look-Once network. The effectiveness and robustness of the proposed method have been proven under various conditions, such as different illumination and camera locations using 96 videos from the experiments.

Joint Detection Technique Effective to Other Cell Interference in the Next Generation Hybrid TD-CDMA Mobile Communication Systems (차세대 복합 시분할 부호분할 이동통신 시스템에서 타 셀 간섭에 효율적인 결합검출 기법)

  • Chang Jin-Weon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.42-48
    • /
    • 2006
  • In this paper a joint detection method for other cell interference cancellation is proposed in the next generation hybrid TD-CDMA mobile communication systems. A joint detection technique, a most characteristic feature of hybrid TD-CDMA mobile communication systems. retrieves users' data in the same time slot simultaneously with the elimination of multiple user interference. Previously a two stage joint detection method was proposed to cancel other cell interference as well as multiple user interference in the target cell. However the previous scheme does not have concrete ways to recognize other cell users who give major interference to the target cell. Thus all users in neighbor other cells has to be jointly detected and it causes huge complexity of the two stage joint detection. In this paper a method is proposed to perform two stage joint detection according to users' interference with the target cell. Performances of the proposed scheme are investigated through simulations and compared to the previous method the proposed method has no performance degradation and also lower the complexity of two stage joint detection significantly.

Real-Time Multiple Face Detection Using Active illumination (능동적 조명을 이용한 실시간 복합 얼굴 검출)

  • 한준희;심재창;설증보;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.155-160
    • /
    • 2003
  • This paper presents a multiple face detector based on a robust pupil detection technique. The pupil detector uses active illumination that exploits the retro-reflectivity property of eyes to facilitate detection. The detection range of this method is appropriate for interactive desktop and kiosk applications. Once the location of the pupil candidates are computed, the candidates are filtered and grouped into pairs that correspond to faces using heuristic rules. To demonstrate the robustness of the face detection technique, a dual mode face tracker was developed, which is initialized with the most salient detected face. Recursive estimators are used to guarantee the stability of the process and combine the measurements from the multi-face detector and a feature correlation tracker. The estimated position of the face is used to control a pan-tilt servo mechanism in real-time, that moves the camera to keep the tracked face always centered in the image.

  • PDF

Development of Tracking Equipment for Real­Time Multiple Face Detection (실시간 복합 얼굴 검출을 위한 추적 장치 개발)

  • 나상동;송선희;나하선;김천석;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1823-1830
    • /
    • 2003
  • This paper presents a multiple face detector based on a robust pupil detection technique. The pupil detector uses active illumination that exploits the retro­reflectivity property of eyes to facilitate detection. The detection range of this method is appropriate for interactive desktop and kiosk applications. Once the location of the pupil candidates are computed, the candidates are filtered and grouped into pairs that correspond to faces using heuristic rules. To demonstrate the robustness of the face detection technique, a dual mode face tracker was developed, which is initialized with the most salient detected face. Recursive estimators are used to guarantee the stability of the process and combine the measurements from the multi­face detector and a feature correlation tracker. The estimated position of the face is used to control a pan­tilt servo mechanism in real­time, that moves the camera to keep the tracked face always centered in the image.

A method for underwater image analysis using bi-dimensional empirical mode decomposition technique

  • Liu, Bo;Lin, Yan
    • Ocean Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-145
    • /
    • 2012
  • Recent developments in underwater image recognition methods have received large attention by the ocean engineering researchers. In this paper, an improved bi-dimensional empirical mode decomposition (BEMD) approach is employed to decompose the given underwater image into intrinsic mode functions (IMFs) and residual. We developed a joint algorithm based on BEMD and Canny operator to extract multi-pixel edge features at multiple scales in IMFs sub-images. So the multiple pixel edge extraction is an advantage of our approach; the other contribution of this method is the realization of the bi-dimensional sifting process, which is realized utilizing regional-based operators to detect local extreme points and constructing radial basis function for curve surface interpolation. The performance of the multi-pixel edge extraction algorithm for processing underwater image is demonstrated in the contrast experiment with both the proposed method and the phase congruency edge detection.

Strain-specific Detection of Bacillus Anthracis using Multiple-locus Variable-number Tandem Repeat Analysis (Multiple-locus Variable-number Tandem Repeat 분석을 사용한 Bacillus Anthracis 균주간 특이성 규명)

  • Jung, Kyoung-Hwa;Kim, Sang-Hoon;Kim, Seong-Joo;Kim, Ji-Cheon;Chai, Young-Gyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.305-312
    • /
    • 2011
  • Bacillus anthracis(Ba) is a Gram-positive spore-forming bacterium that causes the disease anthrax. The feature of Ba is the presence of two large virulence plasmids, pXO1 and pXO2. Molecular genotyping of Ba has been difficult to the lack of polymorphic DNA marker. Ba isolated from Korea has been genotyped using various nucleotide analysis methods, such as 16s rDNA sequencing and multiple-locus variable-number tandem repeat (MLVA) analysis. We identified genotypes that represent a genetic lineage in the B1 cluster. This study emphasized the need to perform molecular genotyping when attempting to verify a strain-specific Ba.