• Title/Summary/Keyword: Multiple coating

Search Result 108, Processing Time 0.023 seconds

Coating defects in polymer-coated drug-eluting stents

  • Bedair, Tarek M.;Cho, Youngjin;Park, Bang Ju;Joung, Yoon Ki;Han, Dong Keun
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.3
    • /
    • pp.131-150
    • /
    • 2014
  • Vascular stenting has a great attention as a treatment for coronary arteries diseases as compared with percutaneous balloon angioplasty. In-stent restenosis and thrombosis are side effects resulting from using bare metal stent (BMS). Employing platelet therapy allowed to reduce the rate of thrombosis, however, the rate of restenosis remains a major problem. In 2002, drug-eluting stents (DESs) were introduced as an effort to reduce the restenosis. The commercially available DESs continue to suffer from coating defects that might lead to a series of adverse effects. Most importantly, multiple concerns remain regarding the polymer coating integrity on metal surfaces or the relation of polymer irregularities to longterm adverse events.

Characteristics of Cr(III)-based Conversion Coating Solution to Apply Aluminum Alloys for Improving Anti-corrosion Properties

  • Shim, Byeong Yun;Kim, Hanul;Han, Chang Nam;Jang, Young Bae;Yun, Jeong Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.79-85
    • /
    • 2016
  • It is imperative to find environment-friendly coatings as an alternative to the currently used hexavalent chromate conversion coatings for the purpose of improving the anti-corrosion properties of aluminum alloys. Hence, in this study, the corrosion properties of a trivalent chromate conversion coating solution are analyzed and measured. Because of the presence of multiple components in trivalent chromate conversion coating solutions, it is difficult to control plating, attributed to their mutual organic relationship. It is of significance to determine the concentrations of the components present in these coatings; hence, qualitative and quantitative analysis is required. The coating solution contained not only an environment-friendly component chromium(III), but also zirconium, fluorine, sulfur, and potassium, in the coating film. These metals are confirmed to produce a film with improved corrosion resistance to form a thin layer. The excellent corrosion resistance for the trivalent chromate solution is attributed to various inorganic and organic additives.

Primer Coating Inspection System Development for Automotive Windshield Assembly Automation Facilities (자동차 글라스 조립 자동화설비를 위한 프라이머 도포검사 비전시스템 개발)

  • Ju-Young Kim;Soon-Ho Yang;Min-Kyu Kim
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.124-130
    • /
    • 2023
  • Implementing flexible production systems in domestic and foreign automotive design parts assembly has increased demand for automation and power reduction. Consequently, transition to a hybrid production method is observed where multiple vehicles are assembled in a single assembly line. Multiple robots, 3D vision sensors, mounting positions, and correction software have complex configurations in the automotive glass mounting system. Hence, automation is required owing to significant difficulty in the assembly process of automobile parts. This study presents a primer lighting and inspection algorithm that is robust to the assembly environment of real automotive design parts using high power 'ㄷ'-shaped LED inclined lighting. Furthermore, a 2D camera was developed in the primer coating inspection system-the core technology of the glass mounting system. A primer application demo line applicable to the actual automobile production line was established using the proposed high power lighting and algorithm. Furthermore, application inspection performance was verified using this demo system. Experimental results verified that the performance of the proposed system exceeded the level required to satisfy the automobile requirements.

Corrosion visualization under organic coating using laser ultrasonic propagation imaging

  • Shi, Anseob;Park, Jinhwan;Lee, Heesoo;Choi, Yunshil;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.301-309
    • /
    • 2022
  • Protective coatings are most widely used anticorrosive structures for steel structures. The corrosion under the coating damages the host material, but this damage is completely hidden. Therefore, a field-applicable under-coating-corrosion visualization method has been desired for a long time. Laser ultrasonic technology has been studied in various fields as an in situ nondestructive inspection method. In this study, a comparative analysis was carried out between a guided-wave ultrasonic propagation imager (UPI) and pulse-echo UPI, which have the potential to be used in the field of under-coating-corrosion management. Both guided-wave UPI and pulse-echo UPI were able to successfully visualize the corrosion. Regarding the field application, the guided-wave UPI performing Q-switch laser scanning and piezoelectric sensing by magnetic attachment exhibited advantages owing to the larger distance and incident angle in the laser measurement than those of the pulse-echo UPI. Regarding the corrosion visualization methods, the combination of adjacent wave subtraction and variable time window amplitude mapping (VTWAM) provided acceptable results for the guided-wave UPI, while VTWAM was sufficient for the pule-echo UPI. In addition, the capability of multiple sensing in a single channel of the guided-wave UPI could improve the field applicability as well as the relatively smaller size of the system. Thus, we propose a guided-wave UPI as a tool for under-coating-corrosion management.

Mode III SIFs for interface cracks in an FGM coating-substrate system

  • Monfared, Mojtaba Mahmoudi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.1
    • /
    • pp.71-79
    • /
    • 2017
  • In this study, interaction of several interface cracks located between a functionally graded material (FGM) layer and an elastic layer under anti-plane deformation based on the distributed dislocation technique (DDT) is analyzed. The variation of the shear modulus of the functionally graded coating is modeled by an exponential and linear function along the thickness of the layer. The complex Fourier transform is applied to governing equation to derive a system of singular integral equations with Cauchy type kernel. These equations are solved by a numerical method to obtain the stress intensity factors (SIFs) at the crack tips. The effects of non-homogeneity parameters for exponentially and linearly form of shear modulus, the thickness of the layers and the length of crack on the SIFs for several interface cracks are investigated. The results reveal that the magnitude of SIFs decrease with increasing of FG parameter and thickness of FGM layer. The values of SIFs for FGM layer with exponential form is less than the linear form.

APPLICATION OF DISPROPORTIONATION REACTION TO SURFACE TREATMENT

  • Oki, Takeo
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.478-481
    • /
    • 1996
  • Disproportionation reaction is very important and interesting reaction to be applied to such surface treatment as metal, alloy, compound coating, a surface etching and so on. In gaseous system, the reaction of Al chloride is applied to Al and Al alloy coating, and the similar reaction of Ti chloride is also used for Ti, Ti alloy and Ti compound coating. As for aqueous system, this reaction is utilized to such metal coat as Sn etc. and metal etching such as Cu, Fe and so on. Also in molten salts system, this reaction has many application for surface treatment like metal, alloy and compound coatings for corrosion, wear, heat resistance and so forth. For instance, carbide film, nitride film, boride film, alloy film, quite new different film from the components of substrate material are coated in single and multiple component film system by the disproportionation reaction.

  • PDF

Design and Fabrication Optical Interference Filters using Multiple and Inhomogeneous Dielectric Layers (다층 및 불균일 SiON 박막을 이용한 광간섭필터의 설계 및 제작)

  • Lim, Sung kyoo
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.11
    • /
    • pp.44-51
    • /
    • 1995
  • Homogeneous, compositionally graded, and superlattice-like silicon oxynitride(SiON) dielectric layers, with the refractive index varying from 1.46 to 2.05 as a function of film thickness, were grown by computer-controlled plasma-enhanced chemical vapor deposition (PECVD) using silane, nitrogen, and nitrous oxide reactant gases. An antireflection(AR) coating and thin-film electroluminescent(TFEL) devices with multiple dielectrics were designed and fabricated using real time control of reactant gases of the PECVD system.

  • PDF

Efficiency enhancement of spray QD solar cells

  • Park, Dasom;Lee, Wonseok;Jang, Jinwoong;Yim, Sanggyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.420.1-420.1
    • /
    • 2016
  • Colloidal quantum dot (CQD) is emerging as a promising active material for next-generation solar cell applications because of its inexpensive and solution-processable characteristics as well as unique properties such as a tunable band-gap due to the quantum-size effect and multiple exciton generation. However, the most widely used spin-coating method for the formation of the quantum dot (QD) active layers is generally hard to be adopted for high productivity and large-area process. Instead, the spray-coating technique may potentially be utilized for high-throughput production of the CQD solar cells (CQDSCs) because it can be adapted to continuous process and large-area deposition on various substrates although the cell efficiency is still lower than that of the devices fabricated with spin-coating method. In this work, we observed that the subsequent treatment of two different ligands, halide ion and butanedithiol, on the lead sulfide (PbS) QD layer significantly enhanced the cell efficiency of the spray CQDSCs. The maximum power conversion efficiency was 5.3%, comparable to that of the spin-coating CQDSCs.

  • PDF

A Surface Modification of Hastelloy X by Sic Coating and Ion Beam Mixing for Application in Nuclear Hydrogen Production

  • Kim, Jaeun;Park, Jaewon;Kim, Minhwan;Kim, Yongwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.205.2-205.2
    • /
    • 2014
  • The effects of ion beam mixing of a SiC film coated on super alloys (hastelloy X substrates) were studied, aiming at developing highly sustainable materials at above $900^{\circ}C$ in decomposed sulfuric acid gas (SO2/SO3/H2O) channels of a process heat exchanger. The bonding between two dissimilar materials is often problematic, particularly in coating metals with a ceramics protective layer. A strong bonding between SiC and hastelloy X was achieved by mixing the atoms at the interface by an ion-beam: The film was not peeled-off at ${\geq}900^{\circ}C$, confirming excellent adhesion, although the thermal expansion coefficient of hastelloy X is about three times higher than that of SiC. Instead, the SiC film was cracked along the grain boundary of the substrate at above $700^{\circ}C$. At ${\geq}900^{\circ}C$, the film was crystallized forming islands on the substrate so that a considerable part of the substrate surface could be exposed to the corrosive environment. To cover the exposed areas and cracks multiple coating/IBM processes have been developed. An immersion corrosion test in 80% sulfuric acid at $300^{\circ}C$ for 100 h showed that the weight retain rate was gradually increased when increasing the processing time.

  • PDF

Preparation of silver stabilizer layer on coated conductor by continuous dip coating method using organic silver complexes (유기 은 착체 화합물을 코팅용액으로 사용하여 연속적인 담금코팅방법에 의한 은 안정화층 제조)

  • Lee, Jong-Beom;Kim, Ji-Cheol;Park, Sin-Keun;Kim, Byeong-Joo;Kim, Jae-Geun;Lee, Hee-Gyoun;Hong, Gye-Won
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Silver stabilizing layer of coated conductor has been prepared by dip coating method using organic silver complexes containing 10 wt% silver as a starting material. Coated silver complex layer was dried in situ with hot air and converted to crystalline silver by post heat treatment in flowing oxygen atmosphere. A dense continuous silver layer with good surface coverage and proper thickness of 230 nm is obtained by multiple dip coatings and heat treatments. The film heat treated at $500^{\circ}C$ showed good mechanical adhesion and crystallographic property. The interface resistivity between superconducting YBCO layer and silver layer prepared by dip coating was measured as $0.67\;{\times}\;10^{-13}\;{\Omega}m^2$. Additional protecting copper layer with the thickness of $20\;{\mu}m$ was successfully deposited by electroplating. The critical current measured with the specimen prepared by dip coating and sputtering on same quality YBCO layer showed similar value of ~140 A and proved its ability to replace sputtering method for industrial production of coated conductor.