• Title/Summary/Keyword: Multiple Vehicle Control

Search Result 192, Processing Time 0.022 seconds

Performance Assessment of a Lithium-Polymer Battery for HEV Utilizing Pack-Level Battery Hardware-in-the-Loop-Simulation System

  • Han, Sekyung;Lim, Jawhwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1431-1438
    • /
    • 2013
  • A pack-level battery hardware-in-the-loop simulation (B-HILS) platform is implemented. It consists of dynamic vehicle models using PSAT and multiple control interfaces including real-time 3D driving and GPS mode. In real-time 3D driving mode, user can drive a virtual vehicle using actual drive equipment such as steering wheel and accelerator to generate the cycle profile of the battery. In GPS mode, actual road traffic and terrain effects can be simulated using GPS data while the trajectory is displayed on Google map. In the latter part of the paper, several performance tests of an actual lithium-polymer battery pack are carried out utilizing the developed system. All experiments are conducted as parts of actual development process of a commercial battery pack adopting 2nd generation Prius as a target vehicle model. Through the experiments, the low temperature performance and fuel efficiency of the battery are quantitatively investigated in comparison with the original nickel-metal hydride (NiMH) pack of the Prius.

Convolutional Neural Network-based System for Vehicle Front-Side Detection (컨볼루션 신경망 기반의 차량 전면부 검출 시스템)

  • Park, Young-Kyu;Park, Je-Kang;On, Han-Ik;Kang, Dong-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1008-1016
    • /
    • 2015
  • This paper proposes a method for detecting the front side of vehicles. The method can find the car side with a license plate even with complicated and cluttered backgrounds. A convolutional neural network (CNN) is used to solve the detection problem as a unified framework combining feature detection, classification, searching, and localization estimation and improve the reliability of the system with simplicity of usage. The proposed CNN structure avoids sliding window search to find the locations of vehicles and reduces the computing time to achieve real-time processing. Multiple responses of the network for vehicle position are further processed by a weighted clustering and probabilistic threshold decision method. Experiments using real images in parking lots show the reliability of the method.

A Nonlinear Information Filter for Tracking Maneuvering Vehicles in an Adaptive Cruise Control Environment

  • Kim, Yong-Shik;Hong, Keum-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1669-1674
    • /
    • 2004
  • In this paper, a nonlinear information filter (IF) for curvilinear motions in an interacting multiple model (IMM) algorithm to track a maneuvering vehicle on a road is investigated. Driving patterns of vehicles on a road are modeled as stochastic hybrid systems. In order to track the maneuvering vehicles, two kinematic models are derived: A constant velocity model for linear motions and a constant-speed turn model for curvilinear motions. For the constant-speed turn model, a nonlinear IF is used in place of the extended Kalman filter in nonlinear systems. The suggested algorithm reduces the root mean squares error for linear motions and rapidly detects possible turning motions.

  • PDF

A New Method to Resolve the Half Cycle Ambiguity for GPS Attitude Determination Systems (자세 측정용 GPS 수신기에서 반파장 모호성 해결을 위한 새로운 방법)

  • Son, Seok-Bo;Park, Sang-Hyun;Park, Chansik;Lee, Sang-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.74-79
    • /
    • 2002
  • A fast and practical method is proposed to resolve the half cycle ambiguity by comparing data sequences from multiple antennas. The method uses the fact that demodulated data sequences from multiple antennas are identical for the same SV (Satellite Vehicle). The performance of the proposed method is evaluated using an attitude determination system. the test results show that the half cycle ambiguity can be resolved within a few bit periods after carrier lock and a seamless attitude is obtained.

Series tuned mass dampers in train-induced vibration control of railway bridges

  • Kahya, Volkan;Araz, Onur
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.453-461
    • /
    • 2017
  • This paper presents the series multiple tuned mass dampers (STMDs) to suppress the resonant vibrations of railway bridges under the passage of high-speed trains (HSTs). A STMD device consisting of two spring-mass-damper units connected each other in series is installed on the bridge. In solution, bridge is modeled as a simply-supported Euler-Bernoulli beam with constant cross-section, and vehicle is simulated as a series of moving forces with constant speed. By the assumed mode method, the governing equations of motion of the beam-TMD device coupled system traversed by a moving train are obtained. The optimum values for the parameters of the STMD device are obtained for the criterion based on the minimization of the maximum dynamic displacement of the beam at its midspan. Single TMD and multiple TMDs in parallel are also considered for demonstration of the STMD device's performance. The results show that STMDs are effective in bridge vibration suppression and robust to parameters' change in the main system and the absorber itself.

A Study for Design of Distribution Center using Compromise Programming (Compromise Programming을 이용한 물류센터 설계에 관한 연구)

  • Heo Byoung-Wan;Lee Hong-Chul
    • Journal of the Korea Society for Simulation
    • /
    • v.14 no.3
    • /
    • pp.43-54
    • /
    • 2005
  • For the effective design of automated distribution center composed of Automated Storage/Retrieval System, Automated Guided Vehicle System, and Conveyor System, we proposed an analysis method to determining. design and control parameters with multiple performance objectives using Compromise Programming, which can resolve the dilemma of conflicting objectives. The Evolution Strategy generates the optimal solutions for each objectives. The Analytic Hierarchy Process selects the best solution among the alternatives generated from Evolution Strategy. The Regression Analysis formulates the objective functions for each objectives. By reducing deviations between goal values and target values generated from Analytic Hierarchy Process, Compromise Programming determines design and control parameters by compromising the multiple objectives formulated using Regression Analysis. When the parameters of system are changed, this proposed analysis method has a benefit of reducing costs and time without repeating whole simulation run.

  • PDF

Driver Assistance System for Backward Motion Control of a Car with a Trailer (차량견인 트레일러의 후진제어를 위한 운전자 보조 시스템)

  • Roh, Jae-Il;Chung, Woo-Jin
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.286-293
    • /
    • 2010
  • The trailer system offers efficiency of transportation capability. However, it is difficult to control the backward motion. It is an open loop unstable problem. To solve this problem, we are proposed the driver assistance system. Driver assistance system assists a driver to control the backward motion of trailer system as if forward motion. A driver only secure the rear view of last passive trailer, and select the control input to drive the last passive trailer. The driver assistance system converts the control input of the driver into velocity and steering angle of the vehicle using the inverse kinematics. It is possible by electronic control input devices and the rear view camera. Effectiveness of driving assistance system is verified by the simulation and the experiments.

Synthesis and Implementation of a Multi-Port DC/DC Converter for Hybrid Electric Vehicles

  • Santhosh, T. K.;Natarajan, K.;Govindaraju, C.
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1178-1189
    • /
    • 2015
  • A non-isolated Multiple Input Converter (MIC) with an input port, two storage ports and a load port is proposed. The synthesis of the proposed four port converter with its switch realization is presented. A steady state analysis of each operating mode with a small-signal model is derived, and a stability analysis is done. A mode selection controller is proposed to automatically choose a specific operating mode based on the voltage levels of the different source and storage units. In addition, a voltage control loop is used to regulate the output voltage. A 200W prototype is built with a TMS320F28027 DSP controller to test the feasibility of the operating modes. Simulation and experimental results show the ability of the proposed converter to handle multiple inputs either individually or simultaneously.

Theoretical Maximum Throughput (TMT) Analysis of the Multiple UAVs datalink system using WLAN (IEEE 802.11b) (무선랜 기반의 복수 무인기 통신링크 최대 처리량 분석)

  • Kim, In-Kyu;Moon, Sang-Man
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.118-122
    • /
    • 2013
  • In this study, We show that multiple UAVs (Unmaned Air Vehicle) have datalink system which includes the IEEE 802.11b technology. we are predicting and calculating to the number of the UAV and data rate between UAV and ground control system, using the IEEE 802.11 standards which include the transmit/receive the delay time and theoretical maximum throughput (TMT).

A New Object Region Detection and Classification Method using Multiple Sensors on the Driving Environment (다중 센서를 사용한 주행 환경에서의 객체 검출 및 분류 방법)

  • Kim, Jung-Un;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.8
    • /
    • pp.1271-1281
    • /
    • 2017
  • It is essential to collect and analyze target information around the vehicle for autonomous driving of the vehicle. Based on the analysis, environmental information such as location and direction should be analyzed in real time to control the vehicle. In particular, obstruction or cutting of objects in the image must be handled to provide accurate information about the vehicle environment and to facilitate safe operation. In this paper, we propose a method to simultaneously generate 2D and 3D bounding box proposals using LiDAR Edge generated by filtering LiDAR sensor information. We classify the classes of each proposal by connecting them with Region-based Fully-Covolutional Networks (R-FCN), which is an object classifier based on Deep Learning, which uses two-dimensional images as inputs. Each 3D box is rearranged by using the class label and the subcategory information of each class to finally complete the 3D bounding box corresponding to the object. Because 3D bounding boxes are created in 3D space, object information such as space coordinates and object size can be obtained at once, and 2D bounding boxes associated with 3D boxes do not have problems such as occlusion.