• Title/Summary/Keyword: Multiple User Classes

Search Result 23, Processing Time 0.016 seconds

A New Resource Allocation with Rate Proportionality Constraints in OFDMA Systems (OFDMA 시스템에서 비율적 전송률 분배를 위한 자원 할당)

  • Han, Seung-Youp;Oh, Eun-Sung;Han, Myeong-Su;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.59-65
    • /
    • 2008
  • In this paper, a new adaptive resource allocation scheme is proposed in orthogonal frequency-division multiple access(OFDMA) systems with rate proportionality constraints. The problem of maximizing the overall system capacity with constraints on bit error rate, total transmission power and rate-proportionality for user requiring different classes of service is formulated. Since the optimal solution to the constrained fairness problem is extremely complex to obtain, a low-complexity suboptimal algorithm that separates subchannel allocation and power allocation is proposed. Firstly, the number of subchannels to be assigned to each user is determined based on the users' average signal-to-noise ratio and rate-proportion. Subchannels are subsequently distributed according to the modified max-min criterion. Lastly, based on the subchannel allocation, the optimal power allocation by solving the Language dual problem is proposed. Additionally, in order to reduce the computational complexity, iterative rate proportionality tracking algorithm is proposed for maximizing the capacity together with maintaining the rate proportionality constraint.

An Enhanced DESYNC Scheme for Simple TDMA Systems in Single-Hop Wireless Ad-Hoc Networks (단일홉 무선 애드혹 네트워크에서 단순 TDMA 시스템을 위한 DESYNC 알고리즘 개선 방안)

  • Hyun, Sanghyun;Lee, Jeyul;Yang, Dongmin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.9
    • /
    • pp.293-300
    • /
    • 2014
  • TDMA(Time Division Multiple Access) is a channel access scheme for shared medium networks. The shared frequency is divided into multiple time slots, some of which are assigned to a user for communication. Techniques for TDMA can be categorized into two classes: synchronous and asynchronous. Synchronization is not suitable for small scale networks because it is complicated and requires additional equipments. In contrast, in DESYNC, a biologically-inspired algorithm, the synchronization can be easily achieved without a global clock or other infrastructure overhead. However, DESYNC spends a great deal of time to complete synchronization and does not guarantee the maximum time to synch completion. In this paper, we propose a lightweight synchronization scheme, C-DESYNC, which counts the number of participating nodes with GP (Global Packet) signal including the information about the starting time of a period. The proposed algorithm is mush simpler than the existing synchronization TDMA techniques in terms of cost-effective method and guarantees the maximum time to synch completion. Our simulation results show that C-DESYNC guarantees the completion of the synchronization process within only 3 periods regardless of the number of nodes.

A Tree-structured XPath Query Reduction Scheme for Enhancing XML Query Processing Performance (XML 질의의 수행성능 향상을 위한 트리 구조 XPath 질의의 축약 기법에 관한 연구)

  • Lee, Min-Soo;Kim, Yun-Mi;Song, Soo-Kyung
    • The KIPS Transactions:PartD
    • /
    • v.14D no.6
    • /
    • pp.585-596
    • /
    • 2007
  • XML data generally consists of a hierarchical tree-structure which is reflected in mechanisms to store and retrieve XML data. Therefore, when storing XML data in the database, the hierarchical relationships among the XML elements are taken into consideration during the restructuring and storing of the XML data. Also, in order to support the search queries from the user, a mechanism is needed to compute the hierarchical relationship between the element structures specified by the query. The structural join operation is one solution to this problem, and is an efficient computation method for hierarchical relationships in an in database based on the node numbering scheme. However, in order to process a tree structured XML query which contains a complex nested hierarchical relationship it still needs to carry out multiple structural joins and results in another problem of having a high query execution cost. Therefore, in this paper we provide a preprocessing mechanism for effectively reducing the cost of multiple nested structural joins by applying the concept of equivalence classes and suggest a query path reduction algorithm to shorten the path query which consists of a regular expression. The mechanism is especially devised to reduce path queries containing branch nodes. The experimental results show that the proposed algorithm can reduce the time requited for processing the path queries to 1/3 of the original execution time.