• 제목/요약/키워드: Multiple Range Images

검색결과 112건 처리시간 0.02초

물체 주위를 돌아가며 3차원 스캐너로 획득된 다면 이미지의 자동접합에 관한 연구 (A Study on the Automatic Registration of Multiple Range Images Obtained by the 3D Scanner around the Object)

  • 홍훈기;조경호
    • 한국CDE학회논문집
    • /
    • 제5권3호
    • /
    • pp.285-292
    • /
    • 2000
  • A new method for the 3D automatic registration of the multiple range images has been developed for the 3D scanners(non-contact coordinates measurement systems). In the existing methods, the user usually has to input more than 3 pairs of corresponding points for the iterative registration process. The major difficulty of the existing systems lies in that the input corresponding points must be selected very carefully because the optimal searching process and the registration results mostly depend upon the accuracy of the selected points. In the proposed method, this kind of difficulty is greatly mitigated even though it needs only 2 pairs of the corresponding input points. Several registration examples on the 3D measured data have been presented and discussed with the introduction to the proposed algorithm.

  • PDF

Deep Learning Machine Vision System with High Object Recognition Rate using Multiple-Exposure Image Sensing Method

  • Park, Min-Jun;Kim, Hyeon-June
    • 센서학회지
    • /
    • 제30권2호
    • /
    • pp.76-81
    • /
    • 2021
  • In this study, we propose a machine vision system with a high object recognition rate. By utilizing a multiple-exposure image sensing technique, the proposed deep learning-based machine vision system can cover a wide light intensity range without further learning processes on the various light intensity range. If the proposed machine vision system fails to recognize object features, the system operates in a multiple-exposure sensing mode and detects the target object that is blocked in the near dark or bright region. Furthermore, short- and long-exposure images from the multiple-exposure sensing mode are synthesized to obtain accurate object feature information. That results in the generation of a wide dynamic range of image information. Even with the object recognition resources for the deep learning process with a light intensity range of only 23 dB, the prototype machine vision system with the multiple-exposure imaging method demonstrated an object recognition performance with a light intensity range of up to 96 dB.

노출이 다른 다수의 입력 영상을 사용한 초해상도 영상 복원 (Super Resolution Reconstruction from Multiple Exposure Images)

  • 이태형;하호건;이철희;하영호
    • 대한전자공학회논문지SP
    • /
    • 제49권1호
    • /
    • pp.73-80
    • /
    • 2012
  • 초해상도 영상복원은 동일한 노출을 가진 다수의 저해상도 영상을 사용하며, 각 영상들 간의 부화소 이동량을 통해 높은 해상도를 가지는 영상을 복원하는 방법이다. 최근에는 노출이 다른 다수의 입력 영상들을 사용하여 해상도와 동적범위 모두를 향상시키는 방법들이 제시되고 있다. 기존의 방법들은 장면의 휘도 변환을 위한 카메라 응답곡선과 톤 맵핑 방법을 필수적으로 요구한다. 이러한 과정에서 CRC 곡선은 추가적인 영상 획득을 요구하며, 과정 또한 복잡하다. 특히 톤 맵핑은 방법에 따라 결과 영상의 화질을 일정하게 나타내지 못하는 장점이 있다. 따라서 본 연구에서는 가중치 맵을 사용한 고해상도 동적 범위 확장 영상 재현 방법을 제시한다. 제안된 방법에서 먼저 각 입력 영상에서 인간 시각에 가장 잘 보이는 영역을 가중치 맵(weight map)이라 정의하고, 가중치 맵이 적용된 입력 영상을 초해상도 복원방법에 적용함으로써, 해상도와 동적 범위가 모두 확장된 결과 영상을 획득한다. 이 방법은 카메라 응답곡선과 톤 맵핑을 사용하지 않음으로 일정한 화질을 획득한다. 또한 제안된 방법은 입력 영상의 구성에 따라 결과 영상의 화질이 다르게 나타남으로, 수수의 불규칙한 입력에도 유사한 결과를 획득하기 위한 밝기 보상 요소를 제안한다.

시점이 다른 다수의 거리 영상으로부터 3차원 물체의 형상 복원 (On Shape Recovery of 3D Object from Multiple Range Images)

  • 김준영;윤일동;이상욱
    • 대한전자공학회논문지SP
    • /
    • 제37권1호
    • /
    • pp.1-15
    • /
    • 2000
  • 3차원 형상의 복구를 위하여 일반적으로 다른 방향에서 취득한 거리 영상을 하나의 좌표계로 변환하는 과정이 필요하다. 본 논문에서는 이러한 과정 중 레지스트레이션과 인티그레이션에 관한 연구 결과를 제시한다 레지스트레이션에 대해서는 가존의 ICP 알고리듬의 수렴 속도 향상을 위해 높은 곡률을 갖는 데이터에 가중치를 주는 2 단계의 알고리듬을 제안한다 첫 번째 단계에서는 모든 거리 데이터 이용하여 적당한 정도의 레지스트레이션을 수행하고 두 번째 단계에서 높은 곡률을 가진 점들만을 이용하여 보다 정확한 레지스트레이션을 수행한다 인티그레이션 알고리듬으로는 가준 좌표계로 변환된 모든 거리 영상간의 전체 오차를 최소화하기 위해 2장간의 거리 영상에 대한 ICP 알고리듬을 임의의 N장의 거리 영상에 대하여 적용할 수 있도록 일반화하는 알고리듬을 제안하였다 제안하는 알고리듬을 통하여 2장간의 변환을 순차적으로 수행하여 기준 좌표계로의 변환을 얻었을 때 레지스트레이션 오차가 누적되는 문제점을 해결하였다 실험결과 레지스트레이션 알고리듬은 펜티움 150MHz PC 환경에서 l분정도의 수행시간을 나타내었다 실험 결과는 제안하는 기법이 적절한 시간내에 모든 거리 데이터들을 오차가 고르게 분포하는 모델을 형성할 수 있음을 보인다.

  • PDF

복수의 거리영상 간의 변환계수의 추출 (Registration multiple range views)

  • 정도현;윤일동;이상욱
    • 전자공학회논문지S
    • /
    • 제34S권2호
    • /
    • pp.52-62
    • /
    • 1997
  • To reconstruct the complete 3-D shape of an object, seveal range images form different viewpoints should be merged into a single model. The process of extraction of the transformation parameters between multiple range views is calle dregistration. In this paper, we propose a new algorithm to find the transformation parameters between multiple range views. Th eproposed algorithm consists of two step: initial estimation and iteratively update the transformation. To guess the initial transformation, we modify the principal axes by considering the projection effect, due to the difference fo viewpoints. Then, the following process is iterated: in order to extract the exact transformation parameters between the range views: For every point of the common region, find the nearest point among the neighborhood of the current corresponding point whose correspondency is defined by the reverse calibration of the range finder. Then, update the transformation to satisfy the new correspondencies. In order to evaluate the performance the proposed registration algorithm, some experiments are performed on real range data, acquired by space encoding range finder. The experimental results show that the proposed initial estimation accelerate the following iterative registration step.

  • PDF

Highly Dense 3D Surface Generation Using Multi-image Matching

  • Noh, Myoung-Jong;Cho, Woo-Sug;Bang, Ki-In
    • ETRI Journal
    • /
    • 제34권1호
    • /
    • pp.87-97
    • /
    • 2012
  • This study presents an automatic matching method for generating a dense, accurate, and discontinuity-preserved digital surface model (DSM) using multiple images acquired by an aerial digital frame camera. The proposed method consists of two main procedures: area-based multi-image matching (AMIM) and stereo-pair epipolar line matching (SELM). AMIM evaluates the sum of the normalized cross correlation of corresponding image points from multiple images to determine the optimal height of an object point. A novel method is introduced for determining the search height range and incremental height, which are necessary for the vertical line locus used in the AMIM. This procedure also includes the means to select the best reference and target images for each strip so that multi-image matching can resolve the common problem over occlusion areas. The SELM extracts densely positioned distinct points along epipolar lines from the multiple images and generates a discontinuity-preserved DSM using geometric and radiometric constraints. The matched points derived by the AMIM are used as anchor points between overlapped images to find conjugate distinct points using epipolar geometry. The performance of the proposed method was evaluated for several different test areas, including urban areas.

Multi-camera based Images through Feature Points Algorithm for HDR Panorama

  • Yeong, Jung-Ho
    • International journal of advanced smart convergence
    • /
    • 제4권2호
    • /
    • pp.6-13
    • /
    • 2015
  • With the spread of various kinds of cameras such as digital cameras and DSLR and a growing interest in high-definition and high-resolution images, a method that synthesizes multiple images is being studied among various methods. High Dynamic Range (HDR) images store light exposure with even wider range of number than normal digital images. Therefore, it can store the intensity of light inherent in specific scenes expressed by light sources in real life quite accurately. This study suggests feature points synthesis algorithm to improve the performance of HDR panorama recognition method (algorithm) at recognition and coordination level through classifying the feature points for image recognition using more than one multi frames.

Terahertz Nondestructive Time-of-flight Imaging with a Large Depth Range

  • Kim, Hwan Sik;Kim, Jangsun;Ahn, Yeong Hwan
    • Current Optics and Photonics
    • /
    • 제6권6호
    • /
    • pp.619-626
    • /
    • 2022
  • In this study, we develop a three-dimensional (3D) terahertz time-of-flight (THz-TOF) imaging technique with a large depth range, based on asynchronous optical sampling (ASOPS) methods. THz-TOF imaging with the ASOPS technique enables rapid scanning with a time-delay span of 10 ns. This means that a depth range of 1.5 m is possible in principle, whereas in practice it is limited by the focus depth determined by the optical geometry, such as the focal length of the scan lens. We characterize the spatial resolution of objects at different vertical positions with a focal length of 5 cm. The lateral resolution varies from 0.8-1.8 mm within the vertical range of 50 mm. We obtain THz-TOF images for samples with multiple reflection layers; the horizontal and vertical locations of the objects are successfully determined from the 2D cross-sectional images, or from reconstructed 3D images. For instance, we can identify metallic objects embedded in insulating enclosures having a vertical depth range greater than 30 mm. For feasible practical use, we employ the proposed technique to locate a metallic object within a thick chocolate bar, which is not accessible via conventional transmission geometry.

View Synthesis and Coding of Multi-view Data in Arbitrary Camera Arrangements Using Multiple Layered Depth Images

  • Yoon, Seung-Uk;Ho, Yo-Sung
    • Journal of Multimedia Information System
    • /
    • 제1권1호
    • /
    • pp.1-10
    • /
    • 2014
  • In this paper, we propose a new view synthesis technique for coding of multi-view color and depth data in arbitrary camera arrangements. We treat each camera position as a 3-D point in world coordinates and build clusters of those vertices. Color and depth data within a cluster are gathered into one camera position using a hierarchical representation based on the concept of layered depth image (LDI). Since one camera can cover only a limited viewing range, we set multiple reference cameras so that multiple LDIs are generated to cover the whole viewing range. Therefore, we can enhance the visual quality of the reconstructed views from multiple LDIs comparing with that from a single LDI. From experimental results, the proposed scheme shows better coding performance under arbitrary camera configurations in terms of PSNR and subjective visual quality.

  • PDF

인공치아 이식부위 분석을 위한 다기능 영상체계의 실험적 검사 (AN EXPERIMENTAL EXAMINATION OF MULTIMODAL IMAGING SYSTEM FOR IMPLANT SITE ASSESSMENT)

  • 박창서;김기덕
    • 치과방사선
    • /
    • 제28권1호
    • /
    • pp.7-16
    • /
    • 1998
  • The Scanora/sup (R)/ X-ray unit uses the principles of narrow beam radiography and spiral tomography. Starting with a panoramic overview as a scout image. multiple tomographic projections could be selected. This study evaluated the accuracy of spiral tomography in comparison to routine panoramic radiography for dental implant treatment planning. An experimental study was performed on a cadaver mandible to assess the accuracy of panoramic radiography and spiral tomography film images for measurement of metallic spheres. After radiographic images of the metallic spheres on the surgical stent were measured and corrected for a fixed magnification of radiographic images. following results were obtained. 1. In the optimal position of the mandible. the minimal horizontal and vertical distortion was evident in the panoramic radiography images. The mean horizontal and vertical magnification error in anterior sites was 5.25% and 0.75%. respectively. The mean horizontal and vertical magnification error in posterior sites was 0.50% and 1.50%. respectively. 2. In the displaced forward or in an eccentric position of the mandible. the magnification error of the panoramic radiography images increased significantly over the optimal position. Overall, the mean horizontal magnification error of the anterior site in the different positions changed dramatically within a range of -17.25% to 39.00%, compared to the posterior range of -5.25% to 8.50%. However, the mean vertical magnification error stayed with the range of 0.5% to 3.75% for all the mandibular positions. 3. The magnification effects in the tomographic scans were nearly identical for the anterior and posterior with a range of 2.00% to 5.75% in the horizontal and 4.50% to 5.50% in the vertical dimension, respectively. 4. A statistically significant difference between the anterior and posterior measurements was found in the horizontal measurements of the panoramic radiography images of the displaced forward and backward position of the mandible(P<0.05). Also a significant difference between the optimal panoramic and tomographic projections was found only in the vertical measurement(P<0.05).

  • PDF