• Title/Summary/Keyword: Multiple Parameter

Search Result 935, Processing Time 0.025 seconds

A Novel SOC Estimation Method for Multiple Number of Lithium Batteries Using a Deep Neural Network (딥 뉴럴 네트워크를 이용한 새로운 리튬이온 배터리의 SOC 추정법)

  • Khan, Asad;Ko, Young-Hwi;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • For the safe and reliable operation of lithium-ion batteries in electric vehicles or energy storage systems, having accurate information of the battery, such as the state of charge (SOC), is essential. Many different techniques of battery SOC estimation have been developed, such as the Kalman filter. However, when this filter is applied to multiple batteries, it has difficulty maintaining the accuracy of the estimation over all cells owing to the difference in parameter values of each cell. The difference in the parameter of each cell may increase as the operation time accumulates due to aging. In this paper, a novel deep neural network (DNN)-based SOC estimation method for multi-cell application is proposed. In the proposed method, DNN is implemented to determine the nonlinear relationships of the voltage and current at different SOCs and temperatures. In the training, the voltage and current data obtained at different temperatures during charge/discharge cycles are used. After the comprehensive training with the data obtained from the cycle test with a cell, the resulting algorithm is applied to estimate the SOC of other cells. Experimental results show that the mean absolute error of the estimation is 1.213% at 25℃ with the proposed DNN-based SOC estimation method.

Optimal Design Parameters of Multiple Tuned Liquid Column Dampers for a 76-Story Benchmark Building (76층 벤치마크 건물에 설치된 다중 동조 액체 기둥 감쇠기의 최적 설계 변수)

  • 김형섭;민경원;김홍진;이상현;안상경
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.251-258
    • /
    • 2004
  • This paper presents the parameter study of multiple tuned liquid damper (MTLCD) applied to the 76-story benchmark building. A parameter study involves the effects of number of TLCD, frequency range, and central tuning frequency ratio, which are important parameters of MTLCD. The performance of MTLCD is carried out numerical analysis which reflects the nonlinear property of liquid motion. The parameters of TLCD exist different each optimal values according to mass ratio. The performance of single-TLCD (STLCD) is sensitive for tuning frequency ratio. Therefore, MTLCD is proposed to protect such the shortcoming of STLCD. The result of numerical analysis presents improved performance for robustness of MTLCD

  • PDF

Estimation of Antenna Correlation Coefficient of N-Port Lossy MIMO Array

  • Saputro, Susilo Ady;Nandiwardhana, Satya;Chung, Jae-Young
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.303-308
    • /
    • 2018
  • This paper proposes a simple yet accurate method for estimating the antenna correlation coefficient (ACC) of a high-order multiple-input multiple-output (MIMO) antenna. The conventional method employed to obtain the ACC from three-dimensional radiation patterns is costly and difficult to measure. An alternate method is to use the S-parameters, which can be easily measured using a network analyzer. However, this method assumes that the antennas are highly efficient, and it is therefore not suitable for lossy MIMO antenna arrays. To overcome this limitation, we define and utilize the non-coupled radiation efficiency in the S-parameter-based ACC formula. The accuracy of the proposed method is verified by the simulation results of a 4-port highly coupled lossy MIMO array. Further, the proposed method can be applied to N-port arrays by expanding the calculation matrix.

Distributed Estimation Using Non-regular Quantized Data

  • Kim, Yoon Hak
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 2017
  • We consider a distributed estimation where many nodes remotely placed at known locations collect the measurements of the parameter of interest, quantize these measurements, and transmit the quantized data to a fusion node; this fusion node performs the parameter estimation. Noting that quantizers at nodes should operate in a non-regular framework where multiple codewords or quantization partitions can be mapped from a single measurement to improve the system performance, we propose a low-weight estimation algorithm that finds the most feasible combination of codewords. This combination is found by computing the weighted sum of the possible combinations whose weights are obtained by counting their occurrence in a learning process. Otherwise, tremendous complexity will be inevitable due to multiple codewords or partitions interpreted from non-regular quantized data. We conduct extensive experiments to demonstrate that the proposed algorithm provides a statistically significant performance gain with low complexity as compared to typical estimation techniques.

Simultaneous Optimization for Robust Design using Distance and Desirability Function

  • Kwon, Yong-Man
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.685-696
    • /
    • 2001
  • Robust design is an approach to reducing performance variation of response values in products and processes. In the Taguchl parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was suggested by Welch et. al. (1990) and studied by others. In these studies, only single response variable was considered. We propose how to simultaneously optimize multiple responses when there are correlations among responses, and when we use the combined-array approach to assign control and noise factors. An example is illustrated to show the difference between the Taguchi's product-array approach and the combined-array approach.

  • PDF

A Multiple Test of a Poisson Mean Parameter Using Default Bayes Factors (디폴트 베이즈인자를 이용한 포아송 평균모수에 대한 다중검정)

  • 김경숙;손영숙
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.2
    • /
    • pp.118-129
    • /
    • 2002
  • A multiple test of a mean parameter, λ, in the Poisson model is considered using the Bayes factor. Under noninformative improper priors, the intrinsic Bayes factor(IBF) of Berger and Pericchi(1996) and the fractional Bayes factor(FBF) of O'Hagan(1995) called as the default or automatic Bayes factors are used to select one among three models, M$_1$: λ< $λ_0, M$_2$: λ= $λ_0, M$_3$: λ> $λ_0. Posterior probability of each competitive model is computed using the default Bayes factors. Finally, theoretical results are applied to simulated data and real data.

A new macroblock-based bit allocation algorithm in multiple MPEG-1 video encoders system (복수개의 MPEG-1 영상 부호화기를 위한 매크로블럭 단위의 비트 할당 기법)

  • 김진수;김재균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.1
    • /
    • pp.53-63
    • /
    • 1997
  • In this paper, we present a new macroblock-based bit allocation scheme in multiple MPEG-1 video encoders system and a single multiplexer over a single channel. The proposed scheme models the relations between fate(Bits/MB) and distortion(MSE/MB), rate and quantizer parameter(QP), distortion and quantizer parameter, respectively, in the same form. By using these relations, we minimize the Larangian cost function to obtain a bit allocation scheme based on macroblock unit. Experimental results show that the proposed scheme can reduce MSE compared to other conventional buffer-based rate control methods, i.e. independent buffer control method and shared common buffer control one. And we confirmed, through computer simulation, that the proposed scheme can be effectively modified to maintain the objective quality of a specific video service at a constant level.

  • PDF

Simultaneous Optimization of Multiple quality Characteristics to Robust Design using Desirability Function (로버스트 설계에서 기대함수를 이용한 다특성 동시 최적화 방안)

  • Kwon, Yong-Man;Park, Byung-Jun
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.2
    • /
    • pp.126-142
    • /
    • 1999
  • Robust design is an approach to reducing performance variation of quality characteristic values in quality engineering. Taguchi has an idea that mean and variation are handled simultaneously to reduce the expected loss in products and processes. Taguchi parameter design has a great deal of advantages but it also has some disadvantages. The various research efforts aimed at developing alternative methods. In the Taguchi parameter design, the product-array approach using orthogonal arrays is mainly used. However, it often requires an excessive number of experiments. An alternative approach, which is called the combined-array approach, was suggested by Welch et. al. ( 1990) and studied by others. In these studies, only single quality characteristic was considered. In this paper we propose how to simultaneously optimize multiple quality characteristics using desirability function when we used the combined-array approach to assign control and noise factors. An example is illustrated to show the difference between the Taguchi's product-array approach and the combined-array approach.

  • PDF

A Study on the Methodology of The Parameter Design of Multiple Characteristics (다특성치 파라미터 설계에 관한 방법론 연구(사례 연구 중심으로))

  • 조용욱;박명규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.50
    • /
    • pp.171-181
    • /
    • 1999
  • Taguchi's robust design methodology has focus only a single characteristic or response, but the quality of most products is seldom defined by a characteristics, and is rather the composite of a family of characteristics which are often interrelated and nearly always measured in a variety of units. The multiple characteristics problem is how to compromise the conflicts among the selected levels of the design parameters for each individual characteristic. In this paper, Methodology using SN ratio optimized by univariate technique is proposed and a parameter design procedure to achive the optimal compromise among several different response variables is developed. One new case studies are solved by the proposed method and the results are compared with ones by the sum of SN ratios, the expected weighted loss, the desirability function, and EXTOPSIS model.

  • PDF

Robust Parameter Design for Multiple Performance Characteristics (다성능(多性能) 특성치(特性値)에 관한 안정성설계(安定性設計))

  • Seo, Sun-Keun;Choi, Jong-Deuk
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.3
    • /
    • pp.34-53
    • /
    • 1994
  • Taguchi's robust design methodology has focused only on a single performance characteristic or response, but the quality of most products is seldom defined by a characteristic, and is rather the composite of a family of characteristics which are often interrelated and nearly always measured in a variety of units. The multiple performance characteristics problem is how to compromise the conflicts among the selected levels of the design parameters for each individual performance characteristic. In this paper, the modified desirability function using SN ratio which can be optimized by univariate technique is proposed and a parameter design procedure to achieve the best balance among several different response variables is developed We reanalyze two existing case studies by the proposed method and compare these results with ones by the sum of SN ratios and the expected weighted loss.

  • PDF