• 제목/요약/키워드: Multiple Optimization Problem

검색결과 448건 처리시간 0.032초

Joint Opportunistic Spectrum Access and Optimal Power Allocation Strategies for Full Duplex Single Secondary User MIMO Cognitive Radio Network

  • Yue, Wenjing;Ren, Yapeng;Yang, Zhen;Chen, Zhi;Meng, Qingmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권10호
    • /
    • pp.3887-3907
    • /
    • 2015
  • This paper introduces a full duplex single secondary user multiple-input multiple-output (FD-SSU-MIMO) cognitive radio network, where secondary user (SU) opportunistically accesses the authorized spectrum unoccupied by primary user (PU) and transmits data based on FD-MIMO mode. Then we study the network achievable average sum-rate maximization problem under sum transmit power budget constraint at SU communication nodes. In order to solve the trade-off problem between SU's sensing time and data transmission time based on opportunistic spectrum access (OSA) and the power allocation problem based on FD-MIMO transmit mode, we propose a simple trisection algorithm to obtain the optimal sensing time and apply an alternating optimization (AO) algorithm to tackle the FD-MIMO based network achievable sum-rate maximization problem. Simulation results show that our proposed sensing time optimization and AO-based optimal power allocation strategies obtain a higher achievable average sum-rate than sequential convex approximations for matrix-variable programming (SCAMP)-based power allocation for the FD transmission mode, as well as equal power allocation for the half duplex (HD) transmission mode.

다중반응표면최적화를 위한 공정능력함수법에서 최소치최대화 기준의 활용에 관한 연구 (Using the Maximin Criterion in Process Capability Function Approach to Multiple Response Surface Optimization)

  • 정인준
    • 지식경영연구
    • /
    • 제20권3호
    • /
    • pp.39-47
    • /
    • 2019
  • Response surface methodology (RSM) is a group of statistical modeling and optimization methods to improve the quality of design systematically in the quality engineering field. Its final goal is to identify the optimal setting of input variables optimizing a response. RSM is a kind of knowledge management tool since it studies a manufacturing or service process and extracts an important knowledge about it. In a real problem of RSM, it is a quite frequent situation that considers multiple responses simultaneously. To date, many approaches are proposed for solving (i.e., optimizing) a multi-response problem: process capability function approach, desirability function approach, loss function approach, and so on. The process capability function approach first estimates the mean and standard deviation models of each response. Then, it derives an individual process capability function for each response. The overall process capability function is obtained by aggregating the individual process capability function. The optimal setting is given by maximizing the overall process capability function. The existing process capability function methods usually use the arithmetic mean or geometric mean as an aggregation operator. However, these operators do not guarantee the Pareto optimality of their solution. Moreover, they may bring out an unacceptable result in terms of individual process capability function values. In this paper, we propose a maximin-based process capability function method which uses a maximin criterion as an aggregation operator. The proposed method is illustrated through a well-known multiresponse problem.

멀티캐스트 라우팅을 위한 다목적 마이크로-유전자 알고리즘 (Multi-Objective Micro-Genetic Algorithm for Multicast Routing)

  • 전성화;한치근
    • 산업공학
    • /
    • 제20권4호
    • /
    • pp.504-514
    • /
    • 2007
  • The multicast routing problem lies in the composition of a multicast routing tree including a source node and multiple destinations. There is a trade-off relationship between cost and delay, and the multicast routing problem of optimizing these two conditions at the same time is a difficult problem to solve and it belongs to a multi-objective optimization problem (MOOP). A multi-objective genetic algorithm (MOGA) is efficient to solve MOOP. A micro-genetic algorithm(${\mu}GA$) is a genetic algorithm with a very small population and a reinitialization process, and it is faster than a simple genetic algorithm (SGA). We propose a multi-objective micro-genetic algorithm (MO${\mu}GA$) that combines a MOGA and a ${\mu}GA$ to find optimal solutions (Pareto optimal solutions) of multicast routing problems. Computational results of a MO${\mu}GA$ show fast convergence and give better solutions for the same amount of computation than a MOGA.

Trust-Tech based Parameter Estimation and its Application to Power System Load Modeling

  • Choi, Byoung-Kon;Chiang, Hsiao-Dong;Yu, David C.
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.451-459
    • /
    • 2008
  • Accurate load modeling is essential for power system static and dynamic analysis. By the nature of the problem of parameter estimation for power system load modeling using actual measurements, multiple local optimal solutions may exist and local methods can be trapped in a local optimal solution giving possibly poor performance. In this paper, Trust-Tech, a novel methodology for global optimization, is applied to tackle the multiple local optimal solutions issue in measurement-based power system load modeling. Multiple sets of parameter values of a composite load model are obtained using Trust-Tech in a deterministic manner. Numerical studies indicate that Trust-Tech along with conventional local methods can be successfully applied to power system load model parameter estimation in measurement-based approaches.

부분서열정렬 개선 기법을 사용한 효율적인 복수서열정렬에 관한 알고리즘 (An Efficient Method for Multiple Sequence Alignment using Subalignment Refinement)

  • 김진;정우철;엄상용
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권9호
    • /
    • pp.803-811
    • /
    • 2003
  • 단백질들의 복수서열정렬은 단백질 서열간의 관계를 유추할 수 있는 유용한 도구이다. 최적화된 복수서열정렬을 얻기 위해 사용되는 가장 유용한 방법은 dynamic programming이다. 그러나 dynamic programming은 특정한 비용함수를 사용할 수 없기 때문에 특별한 경우 최소의 비용을 가지는 복수서열 정렬을 제공하지 못하는 문제점이 있다. 우리는 이러한 문제점을 해결하기 위하여 부분서열정렬 개선기법을 사용한 알고리즘을 제안하였으며, 이 알고리즘이 dynamic programming의 문제점을 효과적으로 해결함을 보였다.

Evaluation and Optimization of Resource Allocation among Multiple Networks

  • Meng, Dexiang;Zhang, Dongchen;Wang, Shoufeng;Xu, Xiaoyan;Yao, Wenwen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권10호
    • /
    • pp.2395-2410
    • /
    • 2013
  • Many telecommunication operators around the world have multiple networks. The networks run by each operator are always of different generations, such as 2G and 3G or even 4G systems. Each system has unique characters and specified requirements for optimal operation. It brings about resource allocation problem among these networks for the operator, because the budget of each operator is limited. However, the evaluation of resource allocation among various networks under each operator is missing for long, not to mention resource allocation optimization. The operators are dying for an algorithm to end their blind resource allocation, and the Resource Allocation Optimization Algorithm for Multi-network Operator (RAOAMO) proposed in this paper is what the operators want. RAOAMO evaluates and optimizes resource allocation in the view of overall cost for each operator. It outputs a resource distribution target and corresponding optimization suggestion. Evaluation results show that RAOAMO helps operator save overall cost in various cases.

Design of multiphase carbon fiber reinforcement of crack existing concrete structures using topology optimization

  • Nguyen, Anh P.;Banh, Thanh T.;Lee, Dongkyu;Lee, Jaehong;Kang, Joowon;Shin, Soomi
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.635-645
    • /
    • 2018
  • Beam-column joints play a significant role in static and dynamic performances of reinforced concrete frame structures. This study contributes a numerical approach of topologically optimal design of carbon fiber reinforced plastics (CFRP) to retrofit existing beam-column connections with crack patterns. In recent, CFRP is used commonly in the rehabilitation and strengthening of concrete members due to the remarkable properties, such as lightweight, anti-corrosion and simplicity to execute construction. With the target to provide an optimal CFRP configuration to effectively retrofit the beam-column connection under semi-failure situation such as given cracks, extended finite element method (X-FEM) is used by combining with multi-material topology optimization (MTO) as a mechanical description approach for strong discontinuity state to mechanically model cracked structures. The well founded mathematical formulation of topology optimization problem for cracked structures by using multiple materials is described in detail in this study. In addition, moved and regularized Heaviside functions (MRHF), that have the role of a filter in multiple materials case, is also considered. The numerical example results illustrated in two cases of beam-column joints with stationary cracks verify the validity, benefit and supremacy of the proposed method.

A Constrained Multi-objective Computation Offloading Algorithm in the Mobile Cloud Computing Environment

  • Liu, Li;Du, Yuanyuan;Fan, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권9호
    • /
    • pp.4329-4348
    • /
    • 2019
  • Mobile cloud computing (MCC) can offload heavy computation from mobile devices onto nearby cloudlets or remote cloud to improve the performance as well as to save energy for these devices. Therefore, it is essential to consider how to achieve efficient computation offloading with constraints for multiple users. However, there are few works that aim at multi-objective problem for multiple users. Most existing works concentrate on only single objective optimization or aim to obtain a tradeoff solution for multiple objectives by simply setting weight values. In this paper, a multi-objective optimization model is built to minimize the average energy consumption, time and cost while satisfying the constraint of bandwidth. Furthermore, an improved multi-objective optimization algorithm called D-NSGA-II-ELS is presented to get Pareto solutions with better convergence and diversity. Compared to other existing works, the simulation results show that the proposed algorithm can achieve better performance in terms of energy consumption, time and cost while satisfying the constraint of the bandwidth.

Relay Selection Scheme Based on Quantum Differential Evolution Algorithm in Relay Networks

  • Gao, Hongyuan;Zhang, Shibo;Du, Yanan;Wang, Yu;Diao, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3501-3523
    • /
    • 2017
  • It is a classical integer optimization difficulty to design an optimal selection scheme in cooperative relay networks considering co-channel interference (CCI). In this paper, we solve single-objective and multi-objective relay selection problem. For the single-objective relay selection problem, in order to attain optimal system performance of cooperative relay network, a novel quantum differential evolutionary algorithm (QDEA) is proposed to resolve the optimization difficulty of optimal relay selection, and the proposed optimal relay selection scheme is called as optimal relay selection based on quantum differential evolutionary algorithm (QDEA). The proposed QDEA combines the advantages of quantum computing theory and differential evolutionary algorithm (DEA) to improve exploring and exploiting potency of DEA. So QDEA has the capability to find the optimal relay selection scheme in cooperative relay networks. For the multi-objective relay selection problem, we propose a novel non-dominated sorting quantum differential evolutionary algorithm (NSQDEA) to solve the relay selection problem which considers two objectives. Simulation results indicate that the proposed relay selection scheme based on QDEA is superior to other intelligent relay selection schemes based on differential evolutionary algorithm, artificial bee colony optimization and quantum bee colony optimization in terms of convergence speed and accuracy for the single-objective relay selection problem. Meanwhile, the simulation results also show that the proposed relay selection scheme based on NSQDEA has a good performance on multi-objective relay selection.

다중반응표면 최적화를 위한 단변량 손실함수법: 대화식 절차 기반의 가중치 결정 (A Univariate Loss Function Approach to Multiple Response Surface Optimization: An Interactive Procedure-Based Weight Determination)

  • 정인준
    • 지식경영연구
    • /
    • 제21권1호
    • /
    • pp.27-40
    • /
    • 2020
  • Response surface methodology (RSM) empirically studies the relationship between a response variable and input variables in the product or process development phase. The ultimate goal of RSM is to find an optimal condition of the input variables that optimizes (maximizes or minimizes) the response variable. RSM can be seen as a knowledge management tool in terms of creating and utilizing data, information, and knowledge about a product production and service operations. In the field of product or process development, most real-world problems often involve a simultaneous consideration of multiple response variables. This is called a multiple response surface (MRS) problem. Various approaches have been proposed for MRS optimization, which can be classified into loss function approach, priority-based approach, desirability function approach, process capability approach, and probability-based approach. In particular, the loss function approach is divided into univariate and multivariate approaches at large. This paper focuses on the univariate approach. The univariate approach first obtains the mean square error (MSE) for individual response variables. Then, it aggregates the MSE's into a single objective function. It is common to employ the weighted sum or the Tchebycheff metric for aggregation. Finally, it finds an optimal condition of the input variables that minimizes the objective function. When aggregating, the relative weights on the MSE's should be taken into account. However, there are few studies on how to determine the weights systematically. In this study, we propose an interactive procedure to determine the weights through considering a decision maker's preference. The proposed method is illustrated by the 'colloidal gas aphrons' problem, which is a typical MRS problem. We also discuss the extension of the proposed method to the weighted MSE (WMSE).