This paper presents a new construction method of candidate controllers using Multi-modal Neural Network(MNN). To improve a control performance of multiple controller, we construct, candidate controllers which consist of MNN. MNN can learn more complicated function than multilayer neural network. MNN consists of preprocessing module and neural network module. The preprocessing module transforms input signals into spectra which are used as input of the following neural network module. We apply the proposed method to multiple control system which controls the cart-pole balancing system and show the effectiveness of the proposed method.
In this paper, we propose multiple component neural network(MCNN) which learn partitioned patterns in each multiple component neural networks by reducing dimensions of input pattern vector using PCA (principal component analysis). Procesed neural network use Oja's rule that has a role of PCA, output patterns are used a slearning patterns on small component neural networks and we call it CBP. For simply not solved patterns in a network, we solves it by regenerating new CBP neural networks and by performing dynamic partitioned pattern learning. Simulation results shows that proposed MCNN neural networks are very small size networks and have very fast learning speed compared with multilayer neural network EBP.
제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
/
pp.109-114
/
1993
It is well known that neural networks can be used to diagnose multiple faults to some limited extent. In this work we present a Multiple Fault Diagnosis Method (MFDM) via neural network which can effectively diagnose multiple faults. To diagnose multiple fault, the proposed method finds the maximum value in the output nodes of the neural network and decreases the node value by changing the hidden node values. This method can find the other faults by computing again with the changed hidden node values. The effectiveness of this method is explored through a neural-network-based fault diagnosis case study of a fluidized catalytic cracking unit (FCCU).
The In-process minitoring of the chatter vibration is necessarily required to an automatic manufacturing system. In this study, we constructed a multi-sensing system using tool dynamoneter, accelerometer and AE(Acoustic Emission) sensor for a more credible detection of chatter vibration. And a new approach using a multiple neural network to extract the features of multi-sensor for the recognition chatter vibration is proposed. With the Back-propagation training process, the neural network memorize and classify the features of multi-sensor signals. As a result, it is shown by multiple neural network that the chatter vibration can be monitored accurately, and it can be widely used in practical unmanned system.
This paper describes multiple fault diagnosis method in complex system with hierarchical structure. Complex system is divided into subsystem, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. We introduced Modular Artificial Neural Network(MANN) for this purpose. MANN consists of four level neural network, first level for symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. Each network is multi layer perceptron with 7 inputs, 30 hidden node and 7 outputs trained by backpropagation. UNIX IPC(Inter Process Communication) is used for implementing MANN with multitasking and message transfer between processes in SUN workstation. We tested MANN in reactor system.
In this paper, we present a solution for combining multiple neural networks. Each neural network is trained with different features. And the neural networks are combined by four methods. The recognition rates by four combination methods are compared. The experimental results for handwritten digit recognition shows that the combination at hidden layers by single layer neural network is superior to any other methods. The reasons of the results are explained.
Indoor localization is becoming one of the most important technologies for smart mobile applications with different requirements from conventional outdoor location estimation algorithms. Fingerprinting location estimation techniques based on neural networks have gained increasing attention from academia due to their good generalization properties. In this paper, we propose a novel location estimation algorithm based on an ensemble of multiple neural networks. The neural network ensemble has drawn much attention in various areas where one neural network fails to resolve and classify the given data due to its' inaccuracy, incompleteness, and ambiguity. To the best of our knowledge, this work is the first to enhance the location estimation accuracy in indoor wireless environments based on a neural network ensemble using fingerprinting training data. To evaluate the effectiveness of our proposed location estimation method, we conduct the numerical experiments using the TGn channel model that was developed by the 802.11n task group for evaluating high capacity WLAN technologies in indoor environments with multiple transmit and multiple receive antennas. The numerical results show that the proposed method based on the NNE technique outperforms the conventional methods and achieves very accurate estimation results even in environments with a low number of APs.
JSTS:Journal of Semiconductor Technology and Science
/
제10권1호
/
pp.28-36
/
2010
Hardware implementation methods for Artificial Neural Network (ANN) have been researched for a long time to achieve high performance. We have proposed a Network on Chip (NoC) for ANN, and this architecture can reduce communication load and increase performance when an implemented ANN is small. In this paper, a multiple NoC models are proposed for ANN, which can implement both a small size ANN and a large size one. The simulation result shows that the proposed multiple NoC models can reduce communication load, increase system performance of connection-per-second (CPS), and reduce system running time compared with the existing hardware ANN. Furthermore, this architecture is reconfigurable and reparable. It can be used to implement different applications of ANN.
In this paper a time-optimal path planning scheme for the multiple robot manipulators will be proposed by using hopfield neural network. The time-optimal path planning, which can allow multiple robot system to perform the demanded tasks with a minimum execution time and collision avoidance, may be of consequence to improve the productivity. But most of the methods proposed till now suffers from a significant computational burden and thus limits the on-line application. One way to avoid such a difficulty is to rearrange the problem as MTSP(Multiple Travelling Salesmen Problem) and then apply the Hopfield network technique, which can allow the parallel computation, to the minimum time problem. This paper proposes an approach for solving the time-optimal path planning of the multiple robots by using Hopfield neural network. The effectiveness of the proposed method is demonstrated by computer simulation.
This paper describes fault diagnosis method in complex system with hierachical structure similar to human body structure. Complex system is divided into unit, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. Fault diagnosis system can forecast faults in a system and decide from current machine state signal information. Comparing with other diagnosis system for single fault, the developed system deals with multiple fault diagnosis comprising Hierarchical Neural Network(HNN). HNN consists of four level neural network, first level for item fault symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. UNIX IPC(Inter Process Communication) is used for implementing HNN wiht multitasking and message transfer between processes in SUN workstation with X-Windows(Motif). We tested HNN at four units, seven items per unit, seven components per item in a complex system. Each one neural newtork operate as a separate process in HNN. The message queue take charge of information exdhange and cooperation between each neural network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.