• Title/Summary/Keyword: Multiple Neural Network

Search Result 673, Processing Time 0.028 seconds

A PROPOSAL OF ENHANSED NEURAL NETWORK CONTROLLERS FOR MULTIPLE CONTROL SYSTEMS

  • Nakagawa, Tomoyuki;Inaba, Masaaki;Sugawara, Ken;Yoshihara, Ikuo;Abe, Kenichi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1998년도 제13차 학술회의논문집
    • /
    • pp.201-204
    • /
    • 1998
  • This paper presents a new construction method of candidate controllers using Multi-modal Neural Network(MNN). To improve a control performance of multiple controller, we construct, candidate controllers which consist of MNN. MNN can learn more complicated function than multilayer neural network. MNN consists of preprocessing module and neural network module. The preprocessing module transforms input signals into spectra which are used as input of the following neural network module. We apply the proposed method to multiple control system which controls the cart-pole balancing system and show the effectiveness of the proposed method.

  • PDF

PCA를 이용한 다중 컴포넌트 신경망 구조설계 및 학습 (Multiple component neural network architecture design and learning by using PCA)

  • 박찬호;이현수
    • 전자공학회논문지B
    • /
    • 제33B권10호
    • /
    • pp.107-119
    • /
    • 1996
  • In this paper, we propose multiple component neural network(MCNN) which learn partitioned patterns in each multiple component neural networks by reducing dimensions of input pattern vector using PCA (principal component analysis). Procesed neural network use Oja's rule that has a role of PCA, output patterns are used a slearning patterns on small component neural networks and we call it CBP. For simply not solved patterns in a network, we solves it by regenerating new CBP neural networks and by performing dynamic partitioned pattern learning. Simulation results shows that proposed MCNN neural networks are very small size networks and have very fast learning speed compared with multilayer neural network EBP.

  • PDF

Multiple fault diagnosis method using a neural network

  • Lee, Sanggyu;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.109-114
    • /
    • 1993
  • It is well known that neural networks can be used to diagnose multiple faults to some limited extent. In this work we present a Multiple Fault Diagnosis Method (MFDM) via neural network which can effectively diagnose multiple faults. To diagnose multiple fault, the proposed method finds the maximum value in the output nodes of the neural network and decreases the node value by changing the hidden node values. This method can find the other faults by computing again with the changed hidden node values. The effectiveness of this method is explored through a neural-network-based fault diagnosis case study of a fluidized catalytic cracking unit (FCCU).

  • PDF

복합 신경회로망을 이용한 채터진동의 인프로세스 감시(II) (In-Process Monitoring of Chatter Vibration using Multiple Neural Network(II))

  • 김정석;강명창;박철
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.100-108
    • /
    • 1995
  • The In-process minitoring of the chatter vibration is necessarily required to an automatic manufacturing system. In this study, we constructed a multi-sensing system using tool dynamoneter, accelerometer and AE(Acoustic Emission) sensor for a more credible detection of chatter vibration. And a new approach using a multiple neural network to extract the features of multi-sensor for the recognition chatter vibration is proposed. With the Back-propagation training process, the neural network memorize and classify the features of multi-sensor signals. As a result, it is shown by multiple neural network that the chatter vibration can be monitored accurately, and it can be widely used in practical unmanned system.

  • PDF

모듈신경망을 이용한 다중고장 진단기법 (Multiple Fault Diagnosis Method by Modular Artificial Neural Network)

  • 배용환;이석희
    • 한국정밀공학회지
    • /
    • 제15권2호
    • /
    • pp.35-44
    • /
    • 1998
  • This paper describes multiple fault diagnosis method in complex system with hierarchical structure. Complex system is divided into subsystem, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. We introduced Modular Artificial Neural Network(MANN) for this purpose. MANN consists of four level neural network, first level for symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. Each network is multi layer perceptron with 7 inputs, 30 hidden node and 7 outputs trained by backpropagation. UNIX IPC(Inter Process Communication) is used for implementing MANN with multitasking and message transfer between processes in SUN workstation. We tested MANN in reactor system.

  • PDF

다중 신경망의 계층 결합에 의한 필기체 숫자 인식에 관한 연구 (A Study on Handwritten Digit Recognition by Layer Combination of Multiple Neural Network)

  • 김두식;임길택;남윤석
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.468-471
    • /
    • 1999
  • In this paper, we present a solution for combining multiple neural networks. Each neural network is trained with different features. And the neural networks are combined by four methods. The recognition rates by four combination methods are compared. The experimental results for handwritten digit recognition shows that the combination at hidden layers by single layer neural network is superior to any other methods. The reasons of the results are explained.

  • PDF

다중 인공신경망 기반의 실내 위치 추정 기법 (Indoor Localization based on Multiple Neural Networks)

  • 손인수
    • 제어로봇시스템학회논문지
    • /
    • 제21권4호
    • /
    • pp.378-384
    • /
    • 2015
  • Indoor localization is becoming one of the most important technologies for smart mobile applications with different requirements from conventional outdoor location estimation algorithms. Fingerprinting location estimation techniques based on neural networks have gained increasing attention from academia due to their good generalization properties. In this paper, we propose a novel location estimation algorithm based on an ensemble of multiple neural networks. The neural network ensemble has drawn much attention in various areas where one neural network fails to resolve and classify the given data due to its' inaccuracy, incompleteness, and ambiguity. To the best of our knowledge, this work is the first to enhance the location estimation accuracy in indoor wireless environments based on a neural network ensemble using fingerprinting training data. To evaluate the effectiveness of our proposed location estimation method, we conduct the numerical experiments using the TGn channel model that was developed by the 802.11n task group for evaluating high capacity WLAN technologies in indoor environments with multiple transmit and multiple receive antennas. The numerical results show that the proposed method based on the NNE technique outperforms the conventional methods and achieves very accurate estimation results even in environments with a low number of APs.

Multiple Network-on-Chip Model for High Performance Neural Network

  • Dong, Yiping;Li, Ce;Lin, Zhen;Watanabe, Takahiro
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제10권1호
    • /
    • pp.28-36
    • /
    • 2010
  • Hardware implementation methods for Artificial Neural Network (ANN) have been researched for a long time to achieve high performance. We have proposed a Network on Chip (NoC) for ANN, and this architecture can reduce communication load and increase performance when an implemented ANN is small. In this paper, a multiple NoC models are proposed for ANN, which can implement both a small size ANN and a large size one. The simulation result shows that the proposed multiple NoC models can reduce communication load, increase system performance of connection-per-second (CPS), and reduce system running time compared with the existing hardware ANN. Furthermore, this architecture is reconfigurable and reparable. It can be used to implement different applications of ANN.

홉필드 신경회로망을 이용한 다중 로보트의 최적 시간 제어 (Optimal time control of multiple robot using hopfield neural network)

  • 최영길;이홍기;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.147-151
    • /
    • 1991
  • In this paper a time-optimal path planning scheme for the multiple robot manipulators will be proposed by using hopfield neural network. The time-optimal path planning, which can allow multiple robot system to perform the demanded tasks with a minimum execution time and collision avoidance, may be of consequence to improve the productivity. But most of the methods proposed till now suffers from a significant computational burden and thus limits the on-line application. One way to avoid such a difficulty is to rearrange the problem as MTSP(Multiple Travelling Salesmen Problem) and then apply the Hopfield network technique, which can allow the parallel computation, to the minimum time problem. This paper proposes an approach for solving the time-optimal path planning of the multiple robots by using Hopfield neural network. The effectiveness of the proposed method is demonstrated by computer simulation.

  • PDF

계층구조 접근에 의한 복합시스템 고장진단 기법 (Fault Diagnosis Method of Complex System by Hierarchical Structure Approach)

  • 배용환;이석희
    • 한국정밀공학회지
    • /
    • 제14권11호
    • /
    • pp.135-146
    • /
    • 1997
  • This paper describes fault diagnosis method in complex system with hierachical structure similar to human body structure. Complex system is divided into unit, item and component. For diagnosing this hierarchical complex system, it is necessary to implement special neural network. Fault diagnosis system can forecast faults in a system and decide from current machine state signal information. Comparing with other diagnosis system for single fault, the developed system deals with multiple fault diagnosis comprising Hierarchical Neural Network(HNN). HNN consists of four level neural network, first level for item fault symptom classification, second level for item fault diagnosis, third level for component symptom classification, forth level for component fault diagnosis. UNIX IPC(Inter Process Communication) is used for implementing HNN wiht multitasking and message transfer between processes in SUN workstation with X-Windows(Motif). We tested HNN at four units, seven items per unit, seven components per item in a complex system. Each one neural newtork operate as a separate process in HNN. The message queue take charge of information exdhange and cooperation between each neural network.

  • PDF