• 제목/요약/키워드: Multiple Linear Regression (MLR)

검색결과 125건 처리시간 0.026초

고속액체 크로마토그래피에서 PAH분자의 구조에 따른 용리시간 예측 (Prediction of Retention Time for PAH Molecule in HPLC)

  • 김영구
    • 대한화학회지
    • /
    • 제44권2호
    • /
    • pp.102-108
    • /
    • 2000
  • 고속액체크로마트그래피에서 RAH분자들이 상대적 용리시간을 다변량선형회귀분석과 인공신경망분석방법을 사용하여 학습시킨 후, 시험 세트의 상대적 용리시간을 예측하였다. PAH의 QSRR에서 주요한 설명인자는 분자연결지수($^1X_v,\;^2X_v$),길이와 폭의 비율(L/B) 및 분자 쌍극자 모멘트(D)이었다, 슬롯 모델과 관계깊은 L/B은 인공신경망분석방법에서는 적절한 설명인자로 작용하나, 다변량회귀분석에서는 그러하지 못하다. 시험세트에서 용리시간 예측도를 나타내주는 분산은 각각 인공신경망분석방법에서 0.0099, 다변량회귀분석방법에서 0.0114이었다. 인공신경망분석방법이 다변량회귀분석보다 더 좋은 결과를 보여준다.

  • PDF

LPG 조성에 따른 황화합물의 분배계수에 관한 연구 (A Study on the Partition Coefficients for Sulfur Compounds Related Composition of LPG)

  • 김영구
    • 대한화학회지
    • /
    • 제46권6호
    • /
    • pp.523-527
    • /
    • 2002
  • LPG에서 황화합물의 분배계수에 미치는 영향에 관하여 연구하였다. 분석 대상 물질은 알칸계통에 사슬형머캡탄이었다. LPG의 액체상 및 기체상의 조성을 기체크로마토그래피로 분석하였다. SAS를 사용한 다중회귀분석방법(MLR)으로 황화합물의 끓는점(Bp), 온도(Tk), 용매의 조성(C4)과 관련되 분배계수를 다음과 같이 구할 수 있었다. Kpc=0.61222(${\pm}$0.000959)Bp+0.26984(${\pm}$0.06504)C40.003803(${\pm}$0.0019993)Tk, N=24, F=14.851, $R^2_{adj}$=0.6437. 분배계수에 미치는 중요 인자는 황화합물의 대기압에서 끓는점과 LPG의 조성이었다. n-부탄의 높은 조성 및 높은 온도에는 분배계수가 증가하여 가스의 취기 상승효과가 클 것으로 추측된다.

다중 선형 회귀 분석과 랜덤 포레스트를 이용한 SS, T-P 대리모니터링 기법 평가 (Evaluation of Surrogate Monitoring Parameters for SS and T-P Using Multiple Linear Regression and Random Forest)

  • 정민혁;범진아;최동호;김영주;허용구;윤광식
    • 한국농공학회논문집
    • /
    • 제63권2호
    • /
    • pp.51-60
    • /
    • 2021
  • Effective nonpoint source (NPS) pollution management requires frequent water quality monitoring, which is, however, often costly to be implemented in practice. Statistical techniques and machine learning methods allow us to identify and focus on fundamental environmental variables that have close relationships with NPS pollutants of interest. This study developed surrogate models to predict the concentrations of suspended sediment (SS) and total phosphorus (T-P) from turbidity and runoff discharge rates using multiple linear regression (MLR) and random forest (RF) methods. The RF models provided acceptable performance in predicting SS and T-P, especially when runoff discharge rates were high. The RF models outperformed the MLR models in all the cases. Such finding highlights the potential of RF techniques and models as a tool to identify fundamental environmental variables that are measured in relatively inexpensive ways or freely available but still able to provide information required to quantify the concentrations of NP S pollutants. The analysis of relative importance rates showed that the temporal variations of SS and T-P concentrations could be more effectively explained by that of turbidity than runoff discharge rate. This study demonstrated that the advanced statistical techniques such as machine learning could help to improve the efficiency of NPS pollutants monitoring.

기준 일증발산량 산정을 위한 인공신경망 모델과 경험모델의 적용 및 비교 (Comparison of Artificial Neural Network and Empirical Models to Determine Daily Reference Evapotranspiration)

  • 최용훈;김민영;수잔 오샤네시;전종길;김영진;송원정
    • 한국농공학회논문집
    • /
    • 제60권6호
    • /
    • pp.43-54
    • /
    • 2018
  • The accurate estimation of reference crop evapotranspiration ($ET_o$) is essential in irrigation water management to assess the time-dependent status of crop water use and irrigation scheduling. The importance of $ET_o$ has resulted in many direct and indirect methods to approximate its value and include pan evaporation, meteorological-based estimations, lysimetry, soil moisture depletion, and soil water balance equations. Artificial neural networks (ANNs) have been intensively implemented for process-based hydrologic modeling due to their superior performance using nonlinear modeling, pattern recognition, and classification. This study adapted two well-known ANN algorithms, Backpropagation neural network (BPNN) and Generalized regression neural network (GRNN), to evaluate their capability to accurately predict $ET_o$ using daily meteorological data. All data were obtained from two automated weather stations (Chupungryeong and Jangsu) located in the Yeongdong-gun (2002-2017) and Jangsu-gun (1988-2017), respectively. Daily $ET_o$ was calculated using the Penman-Monteith equation as the benchmark method. These calculated values of $ET_o$ and corresponding meteorological data were separated into training, validation and test datasets. The performance of each ANN algorithm was evaluated against $ET_o$ calculated from the benchmark method and multiple linear regression (MLR) model. The overall results showed that the BPNN algorithm performed best followed by the MLR and GRNN in a statistical sense and this could contribute to provide valuable information to farmers, water managers and policy makers for effective agricultural water governance.

Assessment through Statistical Methods of Water Quality Parameters(WQPs) in the Han River in Korea

  • Kim, Jae Hyoun
    • 한국환경보건학회지
    • /
    • 제41권2호
    • /
    • pp.90-101
    • /
    • 2015
  • Objective: This study was conducted to develop a chemical oxygen demand (COD) regression model using water quality monitoring data (January, 2014) obtained from the Han River auto-monitoring stations. Methods: Surface water quality data at 198 sampling stations along the six major areas were assembled and analyzed to determine the spatial distribution and clustering of monitoring stations based on 18 WQPs and regression modeling using selected parameters. Statistical techniques, including combined genetic algorithm-multiple linear regression (GA-MLR), cluster analysis (CA) and principal component analysis (PCA) were used to build a COD model using water quality data. Results: A best GA-MLR model facilitated computing the WQPs for a 5-descriptor COD model with satisfactory statistical results ($r^2=92.64$,$Q{^2}_{LOO}=91.45$,$Q{^2}_{Ext}=88.17$). This approach includes variable selection of the WQPs in order to find the most important factors affecting water quality. Additionally, ordination techniques like PCA and CA were used to classify monitoring stations. The biplot based on the first two principal components (PCs) of the PCA model identified three distinct groups of stations, but also differs with respect to the correlation with WQPs, which enables better interpretation of the water quality characteristics at particular stations as of January 2014. Conclusion: This data analysis procedure appears to provide an efficient means of modelling water quality by interpreting and defining its most essential variables, such as TOC and BOD. The water parameters selected in a COD model as most important in contributing to environmental health and water pollution can be utilized for the application of water quality management strategies. At present, the river is under threat of anthropogenic disturbances during festival periods, especially at upstream areas.

다변량 통계분석법을 이용한 PET 중합공정 중 직접 에스테르화 반응기의 거동 및 생산제품 예측 (Multivariate Statistical Analysis Approach to Predict the Reactor Properties and the Product Quality of a Direct Esterification Reactor for PET Synthesis)

  • 김성영;정창복;최수형;이범석;이범석
    • 제어로봇시스템학회논문지
    • /
    • 제11권6호
    • /
    • pp.550-557
    • /
    • 2005
  • The multivariate statistical analysis methods, using both multiple linear regression(MLR) and partial least square(PLS), have been applied to predict the reactor properties and the product quality of a direct esterification reactor for polyethylene terephthalate(PET) synthesis. On the basis of the set of data including the flow rate of water vapor, the flow rate of EG vapor, the concentration of acid end groups of a product and other operating conditions such as temperature, pressure, reaction times and feed monomer mole ratio, two multi-variable analysis methods have been applied. Their regression and prediction abilities also have been compared. The prediction results are critically compared with the actual plant data and the other mathematical model based results in reliability. This paper shows that PLS method approach can be used for the reasonably accurate prediction of a product quality of a direct esterification reactor in PET synthesis process.

Nondestructive Determination of Humic Acids in Soils by Near Infrared Reflectance Spectroscopy

  • Seo, Sang-Hyun;Park, Woo-Churl;Cho, Rae-Kwang;Xiaori Han
    • Near Infrared Analysis
    • /
    • 제1권1호
    • /
    • pp.31-35
    • /
    • 2000
  • Near-infrared reflectance spectroscopy(NIRS) was used to determine the humic acids in soil samples from the fields of different crops and land-use over Youngnam and Honam regions in Korea. An InfraAlyzer 500 scanning spectrophotometer was obtained near infrared relectance spectra of soil at 2-nm intervals from 1100 to 2500nm. Multiple linear regression(MLR) or partial least square regression (PLSR) was used to evaluate a NIRS method for the rapid and nondestructive determination of humic acid, fulvic acid and its total contents in soils. The raw spectral data(log 1/R) can be used for estimating humic acid, fulvic acid and its total contents in soil by MLR procedure between the content of a given constituent and the spectral response of several bands. In which the predicted results for fulvic acid is the best in the constituents. The new spectral data are converted from the raw spectra by PLSR method such as the first derivative of each spectrum can also be used to predict humic acid and fulvic acid of the soil samples. A low SEC, SEP and a high coefficient of correlation in the calibration and validation stages enable selection of the best manipulation. But a simple calibration and prediction method for determining humic acid and fulvic acid should be selected under similar accuracy and precision of prediction. NIRS technique may be an effective method for rapid and nondestructive determination for humic acid, fulvic acid and its total contents in soils.

사과 착색도의 비파괴측정을 위한 근적외분광분석법의 응용 (Application of Near Infrared Spectroscopy for Nondestructive Evaluation of Color Degree of Apple Fruit)

  • 손미령;조래광
    • 한국식품저장유통학회지
    • /
    • 제7권2호
    • /
    • pp.155-159
    • /
    • 2000
  • Apple fruit grading is largely dependant on skin color degree. This work reports about the possibility of nondestructive assessment of apple fruit color using infrared(NIR) reflectance spectroscopy. NIR spectra of apple fruit were collected in wavelength range of 1100~2500nm using an InfraAlyzer 500C(Bran+Luebbe). Calibration as calculated by the standard analysis procedures MLR(multiple linear regression) and stepwise, was performed by allowing the IDAS software to select the best regression equations using raw spectra of sample. Color degree of apple skin was expressed as 2 factors, anthocyanin content by purification and a-value by colorimeter. A total of 90 fruits was used for the calibration set(54) and prediction set(36). For determining a-value, the calibration model composed 6 wavelengths(2076, 2120, 2276, 2488, 2072 and 1492nm) provided the highest accuracy : correlation coefficient is 0.913 and standard error of prediction is 4.94. But, the accuracy of prediction result for anthocyanin content determining was rather low(R of 0.761).

  • PDF

해양플랜트 의장품 조달관리를 위한 배관 공정 리드타임 예측 모델에 관한 연구 (A Study of Piping Leadtime Forecast in Offshore Plant’s Outfittings Procurement Management)

  • 함동균;백명기;박중구;우종훈
    • 대한조선학회논문집
    • /
    • 제53권1호
    • /
    • pp.29-36
    • /
    • 2016
  • In shipbuilding and offshore plant construction, pipe-stools of various types are installed. Moreover, these are many quantities but they must be installed in a successive manner. Due to these characteristics the pipe-stool installation processes easily tends to cause the schedule delays in the overall production processes. In order to reduce delay, the goal of this study is to predicts production’s lead time before manufacturing. Through this predictions it’s expected to reduce total production’s lead time by improving it's process. First of all, we made MLR(Multiple Linear Regression) and PLSR(Partial Least Square Regression) model to predict pipe-spool's lead time and then compared predictability of MLR and PLSR model. If a explanatory variable is added, it will be possible to predict results precisely.

Study of Thiazoline Derivatives for the Design of Optimal Fungicidal Compounds Using Multiple Linear Regression (MLR)

  • Han, Won-Seok;Lee, Jin-Kak;Lee, Jun-Seok;Hahn, Hoh-Gyu;Yoon, Chang-No
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권5호
    • /
    • pp.1703-1706
    • /
    • 2012
  • Rice blast is the most serious disease of rice due to its harmfulness and its world wide distribution. $Magnaporthe$ $grisea$ is the cause of rice blast disease and destroys rice enough to feed several tens of millions of people each year. Fungicides are commonly used to control rice blast. But $M.$ $grisea$ acquires resistance to chemical treatments by genetic mutations. 2-Phenylimino-1,3-thiazolines were proposed as a novel class of fungicides against $M.$ $grisea$ in the previous study. To develop compounds with a higher biological activity, a new series of 2-phenylimino-1,3-thiazolines was synthesized and its fungicidal activity was determined against $M.$ $grisea$. The QSAR analysis was carried out on a series of 2-phenylimino-1,3-thiazolines. The QSAR results showed the dependence of fungicidal activity on the structural and physicochemical features of 2-phenylimino-1,3-thiazolines. Our results could be used as guidelines for the study of the mode of action and further design of optimal fungicides.