• Title/Summary/Keyword: Multiple Infrastructure

Search Result 346, Processing Time 0.025 seconds

Analytical Modeling of TCP Dynamics in Infrastructure-Based IEEE 802.11 WLANs

  • Yu, Jeong-Gyun;Choi, Sung-Hyun;Qiao, Daji
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.518-528
    • /
    • 2009
  • IEEE 802.11 wireless local area network (WLAN) has become the prevailing solution for wireless Internet access while transport control protocol (TCP) is the dominant transport-layer protocol in the Internet. It is known that, in an infrastructure-based WLAN with multiple stations carrying long-lived TCP flows, the number of TCP stations that are actively contending to access the wireless channel remains very small. Hence, the aggregate TCP throughput is basically independent of the total number of TCP stations. This phenomenon is due to the closed-loop nature of TCP flow control and the bottleneck downlink (i.e., access point-to-station) transmissions in infrastructure-based WLANs. In this paper, we develop a comprehensive analytical model to study TCP dynamics in infrastructure-based 802.11 WLANs. We calculate the average number of active TCP stations and the aggregate TCP throughput using our model for given total number of TCP stations and the maximum TCP receive window size. We find out that the default minimum contention window sizes specified in the standards (i.e., 31 and 15 for 802.11b and 802.11a, respectively) are not optimal in terms of TCP throughput maximization. Via ns-2 simulation, we verify the correctness of our analytical model and study the effects of some of the simplifying assumptions employed in the model. Simulation results show that our model is reasonably accurate, particularly when the wireline delay is small and/or the packet loss rate is low.

Elastic modulus of ASR-affected concrete: An evaluation using Artificial Neural Network

  • Nguyen, Thuc Nhu;Yu, Yang;Li, Jianchun;Gowripalan, Nadarajah;Sirivivatnanon, Vute
    • Computers and Concrete
    • /
    • v.24 no.6
    • /
    • pp.541-553
    • /
    • 2019
  • Alkali-silica reaction (ASR) in concrete can induce degradation in its mechanical properties, leading to compromised serviceability and even loss in load capacity of concrete structures. Compared to other properties, ASR often affects the modulus of elasticity more significantly. Several empirical models have thus been established to estimate elastic modulus reduction based on the ASR expansion only for condition assessment and capacity evaluation of the distressed structures. However, it has been observed from experimental studies in the literature that for any given level of ASR expansion, there are significant variations on the measured modulus of elasticity. In fact, many other factors, such as cement content, reactive aggregate type, exposure condition, additional alkali and concrete strength, have been commonly known in contribution to changes of concrete elastic modulus due to ASR. In this study, an artificial intelligent model using artificial neural network (ANN) is proposed for the first time to provide an innovative approach for evaluation of the elastic modulus of ASR-affected concrete, which is able to take into account contribution of several influence factors. By intelligently fusing multiple information, the proposed ANN model can provide an accurate estimation of the modulus of elasticity, which shows a significant improvement from empirical based models used in current practice. The results also indicate that expansion due to ASR is not the only factor contributing to the stiffness change, and various factors have to be included during the evaluation.

Boot storm Reduction through Artificial Intelligence Driven System in Virtual Desktop Infrastructure

  • Heejin Lee;Taeyoung Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.1-9
    • /
    • 2024
  • In this paper, we propose BRAIDS, a boot storm mitigation plan consisting of an AI-based VDI usage prediction system and a virtual machine boot scheduler system, to alleviate boot storms and improve service stability. Virtual Desktop Infrastructure (VDI) is an important technology for improving an organization's work productivity and increasing IT infrastructure efficiency. Boot storms that occur when multiple virtual desktops boot simultaneously cause poor performance and increased latency. Using the xgboost algorithm, existing VDI usage data is used to predict future VDI usage. In addition, it receives the predicted usage as input, defines a boot storm considering the hardware specifications of the VDI server and virtual machine, and provides a schedule to sequentially boot virtual machines to alleviate boot storms. Through the case study, the VDI usage prediction model showed high prediction accuracy and performance improvement, and it was confirmed that the boot storm phenomenon in the virtual desktop environment can be alleviated and IT infrastructure can be utilized efficiently through the virtual machine boot scheduler.

A Study on N-Channel Data Correlators for Multirate in IMT-2000 (IMT-2000에서 Multirate를 위한 N-채널 데이터 상관기에 관한 연구)

  • 김종엽;이선근;김환용
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.49-52
    • /
    • 2000
  • The Multi-Code CDMA systems that are proposed as an effective transmission methodology in the IMT-2000 systems allow higher rate services under the IS-95 CDMA infrastructure. The Multi-Code CDMA systems convert the higher rate data into the lower rate by serial to parallel operation and spread the converted data streams by the multiple walsh codes, and its mobile receiver needs multiple walsh generators and data correlators to demodulate simultaneously multiple walsh code channels. Therefore, the number of data correlators is increased as the number of traffic channels increases. In this paper, we proposed the new structure of the data correlators using walsh overlay coding, the shared accumulator, and FWHT(Fast Walsh Hadamard Transform) algorithm for reducing the bottle-neck effect resulting the increase of the number of data correlators.

  • PDF

An Integrated Scientific Workflow Environment over Multiple Infrastructures for Engineering Education of Aerodynamics (다중 인프라 기반의 공력 설계 교육을 위한 과학 워크플로우 통합 환경)

  • Kim, Seoyoung;Kang, Hyejeong;Kim, Yoonhee;Kim, Chongam
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.2
    • /
    • pp.234-240
    • /
    • 2013
  • All around the world, numerous scientists have been carried out researches of e-Science to improve performance of computations and accessibility of their experimental flexibilities for a long times. However, they still have been in difficulty securing high-performance computing facilities. In case of Aerodynamics, for example, a single experiment costs a tremendous amount of budget and requires a span of more than 6 months even though researchers have been developed diverse improved mathematical methods as well as relied on advanced computing technologies to reduce runtime and costs. In this paper, we proposed a multiple infrastructure-based scientific workflow environments for engineering education in fields of design optimization of aircraft and demonstrated the superiority. Since it offers diverse kind of computing resources, it can offer elastic resources regardless of the number of tasks for experiments and limitations of spaces. Also, it can improve education efficiency by using this environment to engineering education.

An Experimental Study on the Sediment Transport Characteristics Through Vertical Lift Gate (연직수문의 퇴적토 배출특성에 관한 실험적 연구)

  • Lee, Ji Haeng;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.276-284
    • /
    • 2018
  • In order to analyze sediment transport characteristics of knickpoint migration, sediment transport length, and sediment transport weight through the under-flow type vertical lift gate, the hydraulic model experiment and dimensional analysis were performed. The correlations between Froude number and sediment transport characteristics were schematized. The multiple regression formulae for sediment transport characteristics with non-dimensional parameters were suggested. The determination coefficients of multiple regression equations appeared high as 0.618 for knickpoint migration, 0.632 for sediment transport length, and 0.866 for sediment transport weight. In order to evaluate the applicability of the developed hydraulic characteristic equations, 95% prediction interval analysis was conducted on the measured and the calculated by multiple regression equations, and it was determined that NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square), and MAPE (mean absolute percentage error) are appropriate, for the accuracy analysis related to the prediction on sediment transport characteristics of kickpoint migration, sediment transport length and weight.

Mobile ATM: A Generic and flexible network infrastructure for 3G mobile services

  • Jun Li;Roy Yates;Dipankar Raychaudhuri
    • Journal of Communications and Networks
    • /
    • v.2 no.1
    • /
    • pp.35-45
    • /
    • 2000
  • this paper presents the concept of "mobile ATM', a proposal for third-generation (3G) mobile communication network infrastructure capable of supporting flexible evolution of radio technologies from today's cellular and data services towards future wireless multimedia services. Mobile ATM provides generic mobility management and QoS-based transport capabilities suitable for integration of multiple radio access technologies including cellular voice. wireless data, and future broadband wireless services. The architecture of a mobile ATM network is outlined in terms of the newly-defined "W-UNI" interface at the radio link and "M-UNI"and "M-UNI" interface which supports unified access for WATM and non-ATM mobile terminals through corresponding interworking functions (IWF) is explained. leading to an understanding of how different radio access technologies are supported by the same ATM-based core network infrastructure. Generic mechanisms for handoff and location management within the core mobile network are discussed. and related protocol extensions over the "W-UNI" and "M-UNI/NNI"interfaces are proposed. the issue of "crossover switch (COS)" selection in mobile ATM is considered, and a unified handoff signaling syntax which supports flexibility in COS selection is described. Typical signaling sequences for call connection and handoff using the proposed protocols are outlined. Experimental results form a proof-of-concept mobile ATM network prototype are presented in conclusion.

  • PDF

A study on the availability of IP Telephony Network (KOREN망을 통한 IP전화망의 가용성에 관한 연구)

  • Cho, Sok-Pal
    • The Journal of Information Technology
    • /
    • v.12 no.1
    • /
    • pp.21-27
    • /
    • 2009
  • Telecommunications infrastructure based on circuit switch network is rswidly migrating to "all IP" network. However migration to IP has betw slower thaw in mawy other ve "icals because the potis ial risks and adve se impact of se vice impedi is s that may result from a migration ofttw outweigh the btwefi s of IP network. IP Telephony network has several strattgy for the replace is rof the existing Privatto nranch Exchangt, the construction of new IP networks cswible of suwoo "ing multiple communication se vices and applications, includirattgytelephony and the t ofgration of the remainiratexisting Privatto nranch Exchangts t oo new IP tfor the repfrastructure. ThTele "icle suggts s the IP tfor the network infrastructure for migration.

  • PDF

Development of a sea environmental monitoring system using wire and wireless communication ($\cdot$무선통신을 이용한 해양환경 모니터링 시스템의 개발)

  • 김진호;한정만;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.160-165
    • /
    • 1996
  • This paper introduces a sea environmental monitoring system for measuring pH,DO, level and temperature. This system is developed using a personal computer(PC) and multiple single board computers. A PC communicates with the single board computers by awireless communication method and transfers data to another personal computer for processing data by a modem. The values of pH,Do,level and temperature, which are basic components to estimate sea environment, are real-timely processed in the single board computer at each stations, and transferred to the monitoring PC. These data are graphically shown on the PC monitor and logged on the data processing system in the form of file. Using the wire and wireless communication system, user can constantly analyze the acquired data and detect the sea contamination.

  • PDF

The Device Allocation Method for Energy Efficiency in Advanced Metering Infrastructures (첨단 검침 인프라에서 에너지 효율을 위한 기기 할당 방안)

  • Jung, Sungmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.1
    • /
    • pp.33-39
    • /
    • 2020
  • A smart grid is a next-generation power grid that can improve energy efficiency by applying information and communication technology to the general power grid. The smart grid makes it possible to exchange information about electricity production and consumption between electricity providers and consumers in real-time. Advanced metering infrastructure (AMI) is the core technology of the smart grid. The AMI provides two-way communication by installing a modem in an existing digital meter and typically include smart meters, data collection units, and meter data management systems. Because the AMI requires data collection units to control multiple smart meters, it is essential to ensure network availability under heavy network loads. If the load on the work done by the data collection unit is high, it is necessary to allocation new data collection units to ensure availability and improve energy efficiency. In this paper, we discuss the allocation scheme of data collection units for the energy efficiency of the AMI.