• Title/Summary/Keyword: Multiple Dimensional Spectral Analysis

Search Result 22, Processing Time 0.019 seconds

Photogrammetry 기법을 활용한 MSC 설치면의 정밀 측정

  • Woo, Sung-Hyun;Kim, Hong-Bae;Moon, Sang-Mu;Im, Jong-Min
    • Aerospace Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.126-133
    • /
    • 2004
  • Photogrammetry, as its name implies, is a 3-dimensional coordinate measuring technique that uses photographs as the fundamental medium for metrology. In the last few years the accuracy of photogrammetry has increased dramatically thanks to the rapid advance of digital camera manufacturing technique. This paper discusses photogrammetric measurement of the interface surface of MSC(Multi-Spectral Camera), which is a main payload of KOMPSAT-2. Total 24 paper targets on the objective surfaces and two scale bars calibrated with high accuracy were used for measurement, and multiple images were taken from 11 different camera angles by using a spacecraft rotation dolly. As a result of analysis, 3D coordinates of each targeted point were obtained and the flatness value based on the selected reference plane was calculated and compared with the pre-determined requirement. The technique acquired by this study is expected to be used for the 3D precise measurement of ultra-light weight and inflatable space structures such as a satellite antenna and a solar array.

  • PDF

Vibration Identification of Gasoline Direct Injection Engine Based on Partial Coherence Function (부분기여도 함수를 이용한 직접분사 가솔린 엔진 부품의 진동원 분석)

  • Chang, Ji-Uk;Lee, Sang-Kwon;Park, Jong-Ho;Kim, Byung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1371-1379
    • /
    • 2012
  • This paper presents a method for estimating the contribution of vibration sources in gasoline direct injection engine parts with a multiple-input system. A partial coherence function was used to identify the cause of the linear dependence indicated by an ordinary coherence function. To apply the partial coherence function to vibration source identification in the powertrain system of a gasoline direct injection engine, a virtual model of a two-input and single-output system is simulated. For the validation of this model, the vibration of the powertrain parts was measured by using triaxial accelerometers attached to the selected vibration sources-a high-pressure pump, fuel rail, injector, and pressure sensor. After calculating the partial coherence between each source based on the virtual model, the vibration contribution of the powertrain system is calculated. This virtual model based on the partial coherence function is implemented to determine the quantitative vibration contribution of each powertrain part.