• Title/Summary/Keyword: Multiple Classifier System

Search Result 74, Processing Time 0.028 seconds

The bootstrap VQ model for automatic speaker recognition system (VQ 방식의 화자인식 시스템 성능 향상을 위한 부쓰트랩 방식 적용)

  • Kyung YounJeong;Lee Jin-Ick;Lee Hwang-Soo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.39-42
    • /
    • 2000
  • A bootstrap and aggregating (bagging) vector quantization (VQ) classifier is proposed for speaker recognition. This method obtains multiple training data sets by resampling the original training data set, and then integrates the corresponding multiple classifiers into a single classifier. Experiments involving a closed set, text-independent and speaker identification system are carried out using the TIMIT database. The proposed bagging VQ classifier shows considerably improved performance over the conventional VQ classifier.

  • PDF

Multiple Classifier System for Activity Recognition

  • Han, Yong-Koo;Lee, Sung-Young;Lee, young-Koo;Lee, Jae-Won
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.11a
    • /
    • pp.439-443
    • /
    • 2007
  • Nowadays, activity recognition becomes a hot topic in context-aware computing. In activity recognition, machine learning techniques have been widely applied to learn the activity models from labeled activity samples. Most of the existing work uses only one learning method for activity learning and is focused on how to effectively utilize the labeled samples by refining the learning method. However, not much attention has been paid to the use of multiple classifiers for boosting the learning performance. In this paper, we use two methods to generate multiple classifiers. In the first method, the basic learning algorithms for each classifier are the same, while the training data is different (ASTD). In the second method, the basic learning algorithms for each classifier are different, while the training data is the same (ADTS). Experimental results indicate that ADTS can effectively improve activity recognition performance, while ASTD cannot achieve any improvement of the performance. We believe that the classifiers in ADTS are more diverse than those in ASTD.

  • PDF

Design of RBFNNs Pattern Classifier Realized with the Aid of PSO and Multiple Point Signature for 3D Face Recognition (3차원 얼굴 인식을 위한 PSO와 다중 포인트 특징 추출을 이용한 RBFNNs 패턴분류기 설계)

  • Oh, Sung-Kwun;Oh, Seung-Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.6
    • /
    • pp.797-803
    • /
    • 2014
  • In this paper, 3D face recognition system is designed by using polynomial based on RBFNNs. In case of 2D face recognition, the recognition performance reduced by the external environmental factors such as illumination and facial pose. In order to compensate for these shortcomings of 2D face recognition, 3D face recognition. In the preprocessing part, according to the change of each position angle the obtained 3D face image shapes are changed into front image shapes through pose compensation. the depth data of face image shape by using Multiple Point Signature is extracted. Overall face depth information is obtained by using two or more reference points. The direct use of the extracted data an high-dimensional data leads to the deterioration of learning speed as well as recognition performance. We exploit principle component analysis(PCA) algorithm to conduct the dimension reduction of high-dimensional data. Parameter optimization is carried out with the aid of PSO for effective training and recognition. The proposed pattern classifier is experimented with and evaluated by using dataset obtained in IC & CI Lab.

A Nature-inspired Multiple Kernel Extreme Learning Machine Model for Intrusion Detection

  • Shen, Yanping;Zheng, Kangfeng;Wu, Chunhua;Yang, Yixian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.702-723
    • /
    • 2020
  • The application of machine learning (ML) in intrusion detection has attracted much attention with the rapid growth of information security threat. As an efficient multi-label classifier, kernel extreme learning machine (KELM) has been gradually used in intrusion detection system. However, the performance of KELM heavily relies on the kernel selection. In this paper, a novel multiple kernel extreme learning machine (MKELM) model combining the ReliefF with nature-inspired methods is proposed for intrusion detection. The MKELM is designed to estimate whether the attack is carried out and the ReliefF is used as a preprocessor of MKELM to select appropriate features. In addition, the nature-inspired methods whose fitness functions are defined based on the kernel alignment are employed to build the optimal composite kernel in the MKELM. The KDD99, NSL and Kyoto datasets are used to evaluate the performance of the model. The experimental results indicate that the optimal composite kernel function can be determined by using any heuristic optimization method, including PSO, GA, GWO, BA and DE. Since the filter-based feature selection method is combined with the multiple kernel learning approach independent of the classifier, the proposed model can have a good performance while saving a lot of training time.

Design of Robust Face Recognition System to Pose Variations Based on Pose Estimation : The Comparative Study on the Recognition Performance Using PCA and RBFNNs (포즈 추정 기반 포즈변화에 강인한 얼굴인식 시스템 설계 : PCA와 RBFNNs 패턴분류기를 이용한 인식성능 비교연구)

  • Ko, Jun-Hyun;Kim, Jin-Yul;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.9
    • /
    • pp.1347-1355
    • /
    • 2015
  • In this study, we compare the recognition performance using PCA and RBFNNs for introducing robust face recognition system to pose variations based on pose estimation. proposed face recognition system uses Honda/UCSD database for comparing recognition performance. Honda/UCSD database consists of 20 people, with 5 poses per person for a total of 500 face images. Extracted image consists of 5 poses using Multiple-Space PCA and each pose is performed by using (2D)2PCA for performing pose classification. Linear polynomial function is used as connection weight of RBFNNs Pattern Classifier and parameter coefficient is set by using Particle Swarm Optimization for model optimization. Proposed (2D)2PCA-based face pose classification performs recognition performance with PCA, (2D)2PCA and RBFNNs.

Interacting Multiple Model Vehicle-Tracking System Based on Neural Network (신경회로망을 이용한 다중모델 차량추적 시스템)

  • Hwang, Jae-Pil;Park, Seong-Keun;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.641-647
    • /
    • 2009
  • In this paper, a new filtering scheme for adaptive cruise control (ACC) system is presented. In the proposed scheme, the identification of the mode of the preceding vehicle is considered as a classification problem and it is done by a neural network classifier. The neural network classifier outputs a posterior probability of the mode of the preceding vehicle and the probability is directly used in the IMM framework. Finally, ten scenarios are made and the proposed NIMM is tested on them to show its validity.

Classifier Selection using Feature Space Attributes in Local Region (국부적 영역에서의 특징 공간 속성을 이용한 다중 인식기 선택)

  • Shin Dong-Kuk;Song Hye-Jeong;Kim Baeksop
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1684-1690
    • /
    • 2004
  • This paper presents a method for classifier selection that uses distribution information of the training samples in a small region surrounding a sample. The conventional DCS-LA(Dynamic Classifier Selection - Local Accuracy) selects a classifier dynamically by comparing the local accuracy of each classifier at the test time, which inevitably requires long classification time. On the other hand, in the proposed approach, the best classifier in a local region is stored in the FSA(Feature Space Attribute) table during the training time, and the test is done by just referring to the table. Therefore, this approach enables fast classification because classification is not needed during test. Two feature space attributes are used entropy and density of k training samples around each sample. Each sample in the feature space is mapped into a point in the attribute space made by two attributes. The attribute space is divided into regular rectangular cells in which the local accuracy of each classifier is appended. The cells with associated local accuracy comprise the FSA table. During test, when a test sample is applied, the cell to which the test sample belongs is determined first by calculating the two attributes, and then, the most accurate classifier is chosen from the FSA table. To show the effectiveness of the proposed algorithm, it is compared with the conventional DCS -LA using the Elena database. The experiments show that the accuracy of the proposed algorithm is almost same as DCS-LA, but the classification time is about four times faster than that.

Recognition of Handwritten Numerals using Hybrid Features And Combined Classifier (복합 특징과 결합 인식기에 의한 필기체 숫자인식)

  • 박중조;송영기;김경민
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.14-22
    • /
    • 2001
  • Off-line handwritten numeral recognition is a very difficult task and hard to achieve high recognition results using a single feature and a single classifier, since handwritten numerals contain many pattern variations which mostly depend upon individual writing styles. In this paper, we propose handwritten numeral recognition system using hybrid features and combined classifier. To improve recognition rate, we select mutually helpful features -directional features, crossing point feature and mesh features- and make throe new hybrid feature sets by using these features. These hybrid feature sets hold the local and global characteristics of input numeral images. And we implement combined classifier by combining three neural network classifiers to achieve high recognition rate, where fuzzy integral is used for multiple network fusion. In order to verify the performance of the proposed recognition system, experiments with the unconstrained handwritten numeral database of Concordia University, Canada were performed. As a result, our method has produced 97.85% of the recognition rate.

  • PDF

Study on the influence of Alpha wave music on working memory based on EEG

  • Xu, Xin;Sun, Jiawen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.467-479
    • /
    • 2022
  • Working memory (WM), which plays a vital role in daily activities, is a memory system that temporarily stores and processes information when people are engaged in complex cognitive activities. The influence of music on WM has been widely studied. In this work, we conducted a series of n-back memory experiments with different task difficulties and multiple trials on 14 subjects under the condition of no music and Alpha wave leading music. The analysis of behavioral data show that the change of music condition has significant effect on the accuracy and time of memory reaction (p<0.01), both of which are improved after the stimulation of Alpha wave music. Behavioral results also suggest that short-term training has no significant impact on working memory. In the further analysis of electrophysiology (EEG) data recorded in the experiment, auto-regressive (AR) model is employed to extract features, after which an average classification accuracy of 82.9% is achieved with support vector machine (SVM) classifier in distinguishing between before and after WM enhancement. The above findings indicate that Alpha wave leading music can improve WM, and the combination of AR model and SVM classifier is effective in detecting the brain activity changes resulting from music stimulation.

Feature-Vector Normalization for SVM-based Music Genre Classification (SVM에 기반한 음악 장르 분류를 위한 특징벡터 정규화 방법)

  • Lim, Shin-Cheol;Jang, Sei-Jin;Lee, Seok-Pil;Kim, Moo-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, Mel-Frequency Cepstral Coefficient (MFCC), Decorrelated Filter Bank (DFB), Octave-based Spectral Contrast (OSC), Zero-Crossing Rate (ZCR), and Spectral Contract/Roll-Off are combined as a set of multiple feature-vectors for the music genre classification system based on the Support Vector Machine (SVM) classifier. In the conventional system, feature vectors for the entire genre classes are normalized for the SVM model training and classification. However, in this paper, selected feature vectors that are compared based on the One-Against-One (OAO) SVM classifier are only used for normalization. Using OSC as a single feature-vector and the multiple feature-vectors, we obtain the genre classification rates of 60.8% and 77.4%, respectively, with the conventional normalization method. Using the proposed normalization method, we obtain the increased classification rates by 8.2% and 3.3% for OSC and the multiple feature-vectors, respectively.