• Title/Summary/Keyword: Multiple Challenges

Search Result 297, Processing Time 0.024 seconds

Ecological Momentary Assessment Using Smartphone-Based Mobile Application for Affect and Stress Assessment

  • Yang, Yong Sook;Ryu, Gi Wook;Han, Insu;Oh, Seojin;Choi, Mona
    • Healthcare Informatics Research
    • /
    • v.24 no.4
    • /
    • pp.381-386
    • /
    • 2018
  • Objectives: This study aimed to describe the process of utilizing a mobile application for ecological momentary assessment (EMA) to collect data on stress and mood in daily life setting. Methods: A mobile application for the Android operating system was developed and installed with a set of questions regarding momentary mood and stress into a smartphone of a participant. The application sets alarms at semi-random intervals in 60-minute blocks, four times a day for 7 days. After obtaining all momentary affect and stress, the questions to assess the usability of the mobile EMA application were also administered. Results: The data were collected from 97 police officers working in Gyeonggi Province of South Korea. The mean completion rate was 60.0% ranging from 3.5% to 100%. The means of positive and negative affect were 18.34 of 28 and 19.09 of 63. The mean stress was 17.92 of 40. Participants responded that the mobile application correctly measured their affect ($4.34{\pm}0.83$) and stress ($4.48{\pm}0.62$) of 5-point Likert scale. Conclusions: Our study investigated the process of utilizing a mobile application to assess momentary affect and stress at repeated times. We found challenges regarding adherence to the research protocol, such as completion and delay of answering after alarm notification. Despite this inherent issue of adherence to the research protocol, the EMA still has advantages of reducing recall bias and assessing the actual moment of interest at multiple time points that improves ecological validity.

A Study on the Perceptions of Professors and Students of Engineering Colleges on Online Classes for Spring Semester 2020 (2020년 1학기 공과대학 교수와 학생의 온라인 수업에 관한 인식 연구)

  • Kang, So Yeon
    • Journal of Engineering Education Research
    • /
    • v.24 no.2
    • /
    • pp.20-28
    • /
    • 2021
  • In 2020, the COVID-19 pandemic has brought dramatic changes in the field of engineering education. Contrary to the traditional engineering education emphasis on content-oriented, design-based, hands-on, experimental, and field experience, most of engineering classes in 2020 had to be undertaken remotely online. However, it has not been explored how professors and students perceive about such a shift in engineering education. The aim of the current study was to investigate the perceptions of professors and students on online classes in engineering colleges during spring Semester 2020. Questionnaire data were collected from 100 professors and 4,152 students in the college of engineering. The results of this study were as following: Students were less satisfied with the online classes than professors. The online lecture method that students were most satisfied with was the recorded lecture. This is likely due to the fact that the recorded lectures can be repeated multiple times anytime, anywhere. Moreover, the experimental classes, which conventionally has more of an emphasis on the hands-on experience, also had to be conducted remotely, showing even lower satisfaction among students. Most of professors reported that the average hours they spent on preparing for online lecture increased compared to face-to-face class. Both professors and students preferred in-person exam as a desirable method of end-of-semester assessment for grading. The results of the current study have important implications for the improvement of online course environments. It is important for professors to design a structured class suitable for online education and understand the challenges students encounter during online classes. Also, professors should communicate more openly about their expectations and rubrics for class goals and assignments. Schools also needs to make effort to provide the support for the internet environment of students.

Resource Allocation for Heterogeneous Service in Green Mobile Edge Networks Using Deep Reinforcement Learning

  • Sun, Si-yuan;Zheng, Ying;Zhou, Jun-hua;Weng, Jiu-xing;Wei, Yi-fei;Wang, Xiao-jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2496-2512
    • /
    • 2021
  • The requirements for powerful computing capability, high capacity, low latency and low energy consumption of emerging services, pose severe challenges to the fifth-generation (5G) network. As a promising paradigm, mobile edge networks can provide services in proximity to users by deploying computing components and cache at the edge, which can effectively decrease service delay. However, the coexistence of heterogeneous services and the sharing of limited resources lead to the competition between various services for multiple resources. This paper considers two typical heterogeneous services: computing services and content delivery services, in order to properly configure resources, it is crucial to develop an effective offloading and caching strategies. Considering the high energy consumption of 5G base stations, this paper considers the hybrid energy supply model of traditional power grid and green energy. Therefore, it is necessary to design a reasonable association mechanism which can allocate more service load to base stations rich in green energy to improve the utilization of green energy. This paper formed the joint optimization problem of computing offloading, caching and resource allocation for heterogeneous services with the objective of minimizing the on-grid power consumption under the constraints of limited resources and QoS guarantee. Since the joint optimization problem is a mixed integer nonlinear programming problem that is impossible to solve, this paper uses deep reinforcement learning method to learn the optimal strategy through a lot of training. Extensive simulation experiments show that compared with other schemes, the proposed scheme can allocate resources to heterogeneous service according to the green energy distribution which can effectively reduce the traditional energy consumption.

A Survey on 5G Enabled Multi-Access Edge Computing for Smart Cities: Issues and Future Prospects

  • Tufail, Ali;Namoun, Abdallah;Alrehaili, Ahmed;Ali, Arshad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.107-118
    • /
    • 2021
  • The deployment of 5G is in full swing, with a significant yearly growth in the data traffic expected to reach 26% by the year and data consumption to reach 122 EB per month by 2022 [10]. In parallel, the idea of smart cities has been implemented by various governments and private organizations. One of the main objectives of 5G deployment is to help develop and realize smart cities. 5G can support the enhanced data delivery requirements and the mass connection requirements of a smart city environment. However, for specific high-demanding applications like tactile Internet, transportation, and augmented reality, the cloud-based 5G infrastructure cannot deliver the required quality of services. We suggest using multi-access edge computing (MEC) technology for smart cities' environments to provide the necessary support. In cloud computing, the dependency on a central server for computation and storage adds extra cost in terms of higher latency. We present a few scenarios to demonstrate how the MEC, with its distributed architecture and closer proximity to the end nodes can significantly improve the quality of services by reducing the latency. This paper has surveyed the existing work in MEC for 5G and highlights various challenges and opportunities. Moreover, we propose a unique framework based on the use of MEC for 5G in a smart city environment. This framework works at multiple levels, where each level has its own defined functionalities. The proposed framework uses the MEC and introduces edge-sub levels to keep the computing infrastructure much closer to the end nodes.

Evaluating the Usage of Social Medias in the Kingdom of Saudi Arabia: Methodological Limitations and Adjustments

  • Alghamdi, Deena
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.305-311
    • /
    • 2022
  • This research aimed to provide a profound description of the practices of social media users in the Kingdom of Saudi Arabia (KSA), specifically the users of Facebook® (FB) and Snapchat® (SC), the reasons for these practices, decisions made, and the people involved. Such research would be of significant help to designers and policymakers of social media applications in understanding user practices when using social media applications and the reasons for such practices in the KSA. This better comprehension would be of significant help in improving current applications and creating new ones. According to the data analysis, there was a clear preference for SC over FB in the KSA. Most participants with SC accounts were described as very active users, accessing their accounts at least once a day compared to FB users. The users were led by this high preference for SC to create new words derived from the name of the application and use them in daily life. We showed our experience of carrying out a study in which the main objective was to collect factual empirical data from participants about their daily usage of social media applications while considering the unique cultural settings in the KSA. Mixed quantitative and qualitative methods were used to triangulate the data, increasing its trustworthiness and validity. Multiple perspectives were obtained using various data collection methods. Therefore, conclusions would not be confounded with limitations of any particular methodology or with conditions of any collection rounds. This research would constitute a valuable guide for researchers intending to use methods with male and female informants from different cultures, preparing them for potential challenges and suggesting possible solutions.

VM Scheduling for Efficient Dynamically Migrated Virtual Machines (VMS-EDMVM) in Cloud Computing Environment

  • Supreeth, S.;Patil, Kirankumari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.1892-1912
    • /
    • 2022
  • With the massive demand and growth of cloud computing, virtualization plays an important role in providing services to end-users efficiently. However, with the increase in services over Cloud Computing, it is becoming more challenging to manage and run multiple Virtual Machines (VMs) in Cloud Computing because of excessive power consumption. It is thus important to overcome these challenges by adopting an efficient technique to manage and monitor the status of VMs in a cloud environment. Reduction of power/energy consumption can be done by managing VMs more effectively in the datacenters of the cloud environment by switching between the active and inactive states of a VM. As a result, energy consumption reduces carbon emissions, leading to green cloud computing. The proposed Efficient Dynamic VM Scheduling approach minimizes Service Level Agreement (SLA) violations and manages VM migration by lowering the energy consumption effectively along with the balanced load. In the proposed work, VM Scheduling for Efficient Dynamically Migrated VM (VMS-EDMVM) approach first detects the over-utilized host using the Modified Weighted Linear Regression (MWLR) algorithm and along with the dynamic utilization model for an underutilized host. Maximum Power Reduction and Reduced Time (MPRRT) approach has been developed for the VM selection followed by a two-phase Best-Fit CPU, BW (BFCB) VM Scheduling mechanism which is simulated in CloudSim based on the adaptive utilization threshold base. The proposed work achieved a Power consumption of 108.45 kWh, and the total SLA violation was 0.1%. The VM migration count was reduced to 2,202 times, revealing better performance as compared to other methods mentioned in this paper.

Structural health monitoring data anomaly detection by transformer enhanced densely connected neural networks

  • Jun, Li;Wupeng, Chen;Gao, Fan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.613-626
    • /
    • 2022
  • Guaranteeing the quality and integrity of structural health monitoring (SHM) data is very important for an effective assessment of structural condition. However, sensory system may malfunction due to sensor fault or harsh operational environment, resulting in multiple types of data anomaly existing in the measured data. Efficiently and automatically identifying anomalies from the vast amounts of measured data is significant for assessing the structural conditions and early warning for structural failure in SHM. The major challenges of current automated data anomaly detection methods are the imbalance of dataset categories. In terms of the feature of actual anomalous data, this paper proposes a data anomaly detection method based on data-level and deep learning technique for SHM of civil engineering structures. The proposed method consists of a data balancing phase to prepare a comprehensive training dataset based on data-level technique, and an anomaly detection phase based on a sophisticatedly designed network. The advanced densely connected convolutional network (DenseNet) and Transformer encoder are embedded in the specific network to facilitate extraction of both detail and global features of response data, and to establish the mapping between the highest level of abstractive features and data anomaly class. Numerical studies on a steel frame model are conducted to evaluate the performance and noise immunity of using the proposed network for data anomaly detection. The applicability of the proposed method for data anomaly classification is validated with the measured data of a practical supertall structure. The proposed method presents a remarkable performance on data anomaly detection, which reaches a 95.7% overall accuracy with practical engineering structural monitoring data, which demonstrates the effectiveness of data balancing and the robust classification capability of the proposed network.

Secure and Scalable Blockchain-Based Framework for IoT-Supply Chain Management Systems

  • Omimah, Alsaedi;Omar, Batarfi;Mohammed, Dahab
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.37-50
    • /
    • 2022
  • Modern supply chains include multiple activities from collecting raw materials to transferring final products. These activities involve many parties who share a huge amount of valuable data, which makes managing supply chain systems a challenging task. Current supply chain management (SCM) systems adopt digital technologies such as the Internet of Things (IoT) and blockchain for optimization purposes. Although these technologies can significantly enhance SCM systems, they have their own limitations that directly affect SCM systems. Security, performance, and scalability are essential components of SCM systems. Yet, confidentiality and scalability are one of blockchain's main limitations. Moreover, IoT devices are lightweight and have limited power and storage. These limitations should be considered when developing blockchain-based IoT-SCM systems. In this paper, the requirements of efficient supply chain systems are analyzed and the role of both IoT and blockchain technologies in providing each requirement are discussed. The limitations of blockchain and the challenges of IoT integration are investigated. The limitations of current literature in the same field are identified, and a secure and scalable blockchain-based IoT-SCM system is proposed. The proposed solution employs a Hyperledger fabric blockchain platform and tackles confidentiality by implementing private data collection to achieve confidentiality without decreasing performance. Moreover, the proposed framework integrates IoT data to stream live data without consuming its limited resources and implements a dualstorge model to support supply chain scalability. The proposed framework is evaluated in terms of security, throughput, and latency. The results demonstrate that the proposed framework maintains confidentiality, integrity, and availability of on-chain and off-chain supply chain data. It achieved better performance through 31.2% and 18% increases in read operation throughput and write operation throughput, respectively. Furthermore, it decreased the write operation latency by 83.3%.

Spatial distribution of wastewater treatment plants in diverse river basins over the contiguous United States

  • Soohyun Yang;Olaf Buettner;Yuqi Liu;Dietrich Borchardt
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.142-142
    • /
    • 2023
  • Humans inevitably and continuously produce wastewater in daily life worldwide. To decrease the degradation of river water bodies and aquatic ecosystem therein, humans have built systems at different scales to collect, drain, and treat household-produced wastewater. Particularly, municipal wastewater treatment plants (WWTPs) with centralized controls have played a key role in reducing loads of nutrients in domestic wastewater for the last few decades. Notwithstanding such contributions, impaired rivers regarding water quality and habitat integrity still exist at the whole river basin scale. It is highly attributable to the absence of dilution capacity of receiving streams and/or the accumulation of the pollutant loads along flow paths. To improve the perspective for individual WWTPs assessment, the first crucial step is to achieve systematic understanding on spatial distribution characteristics of all WWTPs together in a given river basin. By taking the initiative, our former study showed spatial hierarchical distributions of WWTPs in three large urbanized river basins in Germany. In this study, we uncover how municipal WWTPs in the contiguous United States are distributed along river networks in a give river basin. The extended spatial scope allows to deal with wide ranges in geomorphological attributes, hydro-climatic conditions, and socio-economic status. Furthermore, we identify the relation of the findings with multiple factors related to human activities, such as the spatial distribution of human settlements, the degree of economy development, and the fraction of communities served by WWTPs. Generalizable patterns found in this study are expected to contribute to establishing viable management plans for recent water-environmental challenges caused by WWTP-discharges to river water bodies.

  • PDF

MODELLING HONG KONG RESIDENTIAL CONSTRUCTION DEMAND: EXPERIENCES GAINED AND THEIR IMPLICATIONS

  • Ryan Y.C. Fan;S. Thomas Ng;James M.W. Wong
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.425-432
    • /
    • 2009
  • The construction industry has been a main pillar and serves as a regulator of the Hong Kong economy. Subsequently, the fluctuations in the level of construction output can induce significant rippling effects to the economy. The Asian Financial Crisis started in 1997 and the SARS outbreak in 2003 both introduced major challenges and impacts to the Hong Kong economy and consequently the construction sector. Such decline in the importance of construction has suggested a possible structural change in the sector. It is worth investigating the driving forces behind the construction demand and see if they have changed after the heavy impacts in the past decade. The above considerations have, therefore, been the motivation of the present study to model the Hong Kong residential construction demand through multiple regression technique which can identify the significant influencing factors to the residential demand. The residential construction is studied as it constitutes a significant portion of the total construction volume. The residential sector has great influence to the general economy of Hong Kong. It is found that the underlying market structure and the driving factors for Hong Kong residential demand before and after the Asian Economic Crisis and SARS outbreak are different, suggesting that the residential construction sector or even the larger construction industry may have undergone a major structural change as Hong Kong's economy approaches maturity. It is also observed that the past literatures on construction demand are mostly focusing on predicting demand under a stable economic environment. Hence, it is worth examining if it is possible to model during economic hardship when the residential sector fluctuate dramatically under different external impacts, such as the recent global financial tsunami.

  • PDF